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IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

TI warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer.
Use of TI products in such applications requires the written approval of an appropriate TI officer.
Questions concerning potential risk applications should be directed to TI through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright   1997, Texas Instruments Incorporated
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Preface

Read This First

About This Manual

This reference guide describes the on-chip peripherals of the TMS320C62xx digi-
tal signal processors (DSPs). Main topics are the program memory, data memory,
direct memory access (DMA) controller, host port, external memory interface
(EMIF), boot configuration, multichannel serial ports (MCSPs), timers, interrupt
selector and external interrupts, device clocking, and power-down modes.

Notational Conventions

This document uses the following conventions:

� Program listings, program examples, file names, and symbol names are
shown in a special font . Here is a sample program listing:

LDW .D1 *A0,A1
ADD .L1 A1,A2,A3
NOP 3
MPY .M1 A1,A4,A5

� Throughout this book MSB means most significant bit and LSB means
least significant bit. 

� Register notation:

31

FLD A B C D

10 9 8 7 5 4 2 1 0

E F

R, W, +0 R, +x R, W, +1R, C, +0

Legend : R Readable by the instruction
W Writeable by the instruction
+x Value undefined after reset
+0 Value is zero after reset
+1 Value is zero after reset
C Clearable using the MVC instruction
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Information About Cautions and Warnings

This book may contain cautions and warnings.

This is an example of a caution statement.

A caution statement describes a situation that could potentially
damage your software or equipment.

This is an example of a warning statement.

A warning statement describes a situation that could potentially
cause harm to you .

The information in a caution or warning is provided for your protection. Please
read each caution and warning carefully.
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Related Documentation From Texas Instruments

The following books describe the TMS320C6x family and related support
tools. To obtain a copy of any of these TI documents, call the Texas Instru-
ments Literature Response Center at (800) 477–8924. When ordering, please
identify the book by its title and literature number.

TMS320C62xx Technical Brief  (literature number SPRU197) gives an
introduction to the ’C62xx digital signal processor, development tools,
and third-party support.

TMS320C62xx CPU and Instruction Set Reference Guide  (literature
number SPRU189) describes the ’C62xx CPU architecture, instruction
set, pipeline, and interrupts for the TMS320C62xx digital signal proces-
sors.

TMS320C62xx Programmer’s Guide  (literature number SPRU198)
describes ways to optimize C and assembly code and includes applica-
tion program examples.

TMS320C6x Assembly Language Tools User’s Guide  (literature number
SPRU186) describes the assembly language tools (assembler, linker,
and other tools used to develop assembly language code), assembler
directives, macros, common object file format, and symbolic debugging
directives for the ’C6x generation of devices.

TMS320C6x Optimizing C Compiler User’s Guide (literature number
SPRU187) describes the ’C6x C compiler. This C compiler accepts ANSI
standard C source code and produces assembly language source code
for the ’C6x generation of devices. This book also describes the
assembly optimizer, which helps you optimize your assembly code.

TMS320C6x C Source Debugger User’s Guide  (literature number
SPRU188) tells you how to invoke the ’C6x simulator and emulator
versions of the C source debugger interface. This book discusses
various aspects of the debugger, including command entry, code
execution, data management, breakpoints, profiling, and analysis.

TMS320C6201 Digital Signal Processor Data Sheet  (literature number
SPRS051) describes the features of the TMS320C6xx and provides pin-
outs, electrical specifications, and timings for the device.
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Trademarks

320 Hotline On-line and XDS 510 are trademarks of Texas Instruments
Incorporated.

PC is a trademark of International Business Machines Corporation.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

VelociTI is a trademark of Texas Instruments Incorporated.

Windows and Windows NT are registered trademarks of Microsoft Corporation.
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If You Need Assistance . . .

� World-Wide Web Sites
TI Online http://www.ti.com
Semiconductor Product Information Center (PIC) http://www.ti.com/sc/docs/pic/home.htm
DSP Solutions http://www.ti.com/dsps
320 Hotline On-line� http://www.ti.com/sc/docs/dsps/support.htm

� North America, South America, Central America
Product Information Center (PIC) (972) 644-5580
TI Literature Response Center U.S.A. (800) 477-8924
Software Registration/Upgrades (214) 638-0333 Fax:  (214) 638-7742
U.S.A. Factory Repair/Hardware Upgrades (281) 274-2285
U.S. Technical Training Organization (972) 644-5580
DSP Hotline (281) 274-2320 Fax:  (281) 274-2324 Email: dsph@ti.com
DSP Modem BBS (281) 274-2323
DSP Internet BBS via anonymous ftp to ftp://ftp.ti.com/pub/tms320bbs

� Europe, Middle East, Africa
European Product Information Center (EPIC) Hotlines: 

Multi-Language Support +33 1 30 70 11 69 Fax: +33 1 30 70 10 32 Email: epic@ti.com
Deutsch +49 8161 80 33 11  or +33 1 30 70 11 68
English +33 1 30 70 11 65
Francais +33 1 30 70 11 64
Italiano +33 1 30 70 11 67

EPIC Modem BBS +33 1 30 70 11 99
European Factory Repair +33 4 93 22 25 40
Europe Customer Training Helpline Fax: +49 81 61 80 40 10

� Asia-Pacific
Literature Response Center +852 2 956 7288 Fax:  +852 2 956 2200
Hong Kong DSP Hotline +852 2 956 7268 Fax:  +852 2 956 1002
Korea DSP Hotline +82 2 551 2804 Fax:  +82 2 551 2828
Korea DSP Modem BBS +82 2 551 2914
Singapore DSP Hotline Fax:  +65 390 7179
Taiwan DSP Hotline +886 2 377 1450 Fax:  +886 2 377 2718
Taiwan DSP Modem BBS +886 2 376 2592
Taiwan DSP Internet BBS via anonymous ftp to ftp://dsp.ee.tit.edu.tw/pub/TI/

� Japan
Product Information Center +0120-81-0026  (in Japan) Fax:  +0120-81-0036 (in Japan)

+03-3457-0972 or (INTL) 813-3457-0972 Fax:  +03-3457-1259 or (INTL) 813-3457-1259
DSP Hotline +03-3769-8735 or (INTL) 813-3769-8735 Fax:  +03-3457-7071 or (INTL) 813-3457-7071
DSP BBS via Nifty-Serve Type “Go TIASP”

� Documentation
When making suggestions or reporting errors in documentation, please include the following information that is on the title
page: the full title of the book, the publication date, and the literature number.

Mail: Texas Instruments Incorporated
Technical Documentation Services, MS 702
P.O. Box 1443
Houston, Texas 77251-1443

Note: When calling a Literature Response Center to order documentation, please specify the literature number of the
book.
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Introduction

The TMS320C6x generation of digital signal processors is part of the TMS320
family of digital signal processors (DSPs). The TMS320C62xx devices are
fixed-point DSPs in the TMS320C6x generation. The TMS320C62xx is the
first DSP to use the VelociTI  architecture, a high-performance, advanced
VLIW (very long instruction word) architecture, making the ’C62xx an excellent
choice for multichannel, multifunction, and high data rate applications.

The ’C62xx’s VelociTI architecture makes it the first off-the-shelf DSP to use
advanced VLIW to achieve high performance through increased instruction-
level parallelism. The VelociTI advanced VLIW architecture uses multiple exe-
cution units operating in parallel to execute multiple instructions during a single
clock cycle. Parallelism is the key to extremely high performance, taking these
DSPs well beyond the performance capabilities of traditional designs.
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1.1 TMS320 Family Overview

The TMS320 family consists of fixed-point, floating-point, and multiprocessor
digital signal processors (DSPs). TMS320 DSPs have an architecture
designed specifically for real-time signal processing.

1.1.1 History of TMS320 DSPs

In 1982, Texas Instruments introduced the TMS32010—the first fixed-point
DSP in the TMS320 family. Before the end of the year, Electronic Products
magazine awarded the TMS32010 the title “Product of the Year”. Today, the
TMS320 family consists of many generations: ’C1x, ’C2x, ’C2xx, ’C5x, and
’C54x fixed-point DSPs; ’C3x and ’C4x floating-point DSPs; and ’C8x multipro-
cessor DSPs. Now there is a new generation of DSPs, the TMS320C6x
generation, with performance and features that are reflective of Texas Instru-
ments commitment to lead the world in DSP solutions.

1.1.2 Typical Applications for the TMS320 Family

Table 1–1 lists some typical applications for the TMS320 family of DSPs. The
TMS320 DSPs offer adaptable approaches to traditional signal-processing
problems. They also support complex applications that often require multiple
operations to be performed simultaneously.



TMS320 Family Overview

1-3Introduction

Table 1–1. Typical Applications for the TMS320 DSPs

Automotive Consumer Control

Adaptive ride control
Antiskid brakes
Cellular telephones
Digital radios
Engine control
Global positioning
Navigation
Vibration analysis
Voice commands

Digital radios/TVs
Educational toys
Music synthesizers
Pagers
Power tools
Radar detectors
Solid-state answering machines

Disk drive control
Engine control
Laser printer control
Motor control
Robotics control
Servo control

General Purpose Graphics/Imaging Industrial

Adaptive filtering
Convolution
Correlation
Digital filtering
Fast Fourier transforms
Hilbert transforms
Waveform generation
Windowing

3-D computing
Animation/digital maps
Homomorphic processing
Image compression/transmission
Image enhancement 
Pattern recognition
Robot vision
Workstations

Numeric control
Power-line monitoring
Robotics
Security access

Instrumentation Medical Military

Digital filtering
Function generation
Pattern matching
Phase-locked loops
Seismic processing
Spectrum analysis
Transient analysis

Diagnostic equipment
Fetal monitoring
Hearing aids
Patient monitoring
Prosthetics
Ultrasound equipment

Image processing
Missile guidance
Navigation
Radar processing
Radio frequency modems
Secure communications
Sonar processing

Telecommunications Voice/Speech

1200- to 56 600-bps modems
Adaptive equalizers
ADPCM transcoders
Base stations
Cellular telephones
Channel multiplexing
Data encryption
Digital PBXs
Digital speech interpolation (DSI)
DTMF encoding/decoding
Echo cancellation

Faxing
Future terminals
Line repeaters
Personal communications

systems (PCS)
Personal digital assistants (PDA)
Speaker phones
Spread spectrum communications
Digital subscriber loop (xDSL)
Video conferencing
X.25 packet switching

Speaker verification
Speech enhancement
Speech recognition
Speech synthesis
Speech vocoding
Text-to-speech
Voice mail



Overview of the TMS320C6x Generation of Digital Signal Processors

 1-4

1.2 Overview of the TMS320C6x Generation of Digital Signal Processors

With a performance of up to 1600 million instructions per second (MIPS) and
an efficient C compiler, the TMS320C6x DSPs give system architects
unlimited possibilities to differentiate their products. High performance, ease
of use, and affordable pricing make the TMS320C6x generation the ideal
solution for multichannel, multifunction applications, such as:

� Pooled modems
� Wireless base stations
� Remote access servers (RAS)
� Digital subscriber loop (DSL) systems
� Cable modems
� Multichannel telephony systems

The TMS320C6x generation is also an ideal solution for exciting new applications,
for example:

� Personalized home security with face and hand/fingerprint recognition
� Advanced cruise control with GPS navigation and accident avoidance
� Remote medical diagnostics
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1.3 Features and Options of the TMS320C62xx

At 200 MHz, the ’C62xx devices operate at a 5-ns cycle time, executing up to
eight 32-bit instructions every cycle. The device’s core CPU consists of 32
general-purpose registers of 32-bit word length and eight functional units:

� Two multipliers
� Six ALUs

The ’C62xx has a complete set of optimized development tools, including an
efficient C compiler, an assembly optimizer for simplified assembly-language
programming and scheduling, and a Windows  based debugger interface for
visibility into source code execution characteristics. A hardware emulation
board, compatible with the TI XDS510  emulator interface, is also available.
This tool complies with IEEE Standard 1149.1–1990, IEEE Standard Test
Access Port and Boundary Scan Architecture.

Features of the ’C62xx include:

� Advanced VLIW CPU with eight functional units, including two multipliers
and six arithmetic units

� Executes up to eight instructions per cycle for up to ten times the
performance of other DSPs

� Allows designers to develop highly effective RISC-like code for fast
development time

� Instruction packing

� Gives code size equivalence for eight instructions executed serially or
in parallel

� Reduces code size, program fetches, and power consumption

� All instructions execute conditionally

� Reduces costly branching

� Increases parallelism for higher sustained performance

� Efficient code execution on independent functional units.

� Industry’s most efficient C compiler on DSP benchmark suite

� Industry’s first assembly optimizer for fast development and improved
parallelism
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� 8/16/32-bit data support, providing efficient memory support for a variety
of applications

� 40-bit arithmetic options add extra precision for vocoders and other
computationally intensive applications

� Saturation and normalization provide support for key arithmetic operations.

� Field manipulation and instruction extract, set, clear, and bit counting support
common operation found in control and data manipulation applications.

For more information on features and options of the TMS320C62xx, see the
TMS320C62xx CPU and Instruction Set Reference Guide. For more information
on the EMIF, see the TMS320C62xx Peripherals Reference Guide.
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1.4 Overview of TMS320C62xx Memory

The TMS320C62xx memory map consists of:

� Internal program memory
� Internal data memory
� Internal peripherals
� External memory accessed through the EMIF

The internal program memory can be mapped into the CPU address space or
operate as a cache. A 256-bit wide path is provided from to the CPU to allow
a continuous stream of 8 32-bit instructions for maximum performance. When
off-chip memory is used, the external memory interface (EMIF) unifies these
spaces to a single memory space on most devices, if so desired.

The data memory controller connects:

� The CPU and direct memory access (DMA) controller to internal data
memory and performs the necessary arbitration

� The CPU data access to the external memory interface (EMIF)

� The CPU to on-chip peripherals through the peripheral bus controller

The data memory controller services all requests to internal data memory as
well as all CPU data requests to external data memory.

The CPU sends requests to the data memory controller. Store data is transmitted
through the CPU data store buses. Load data is received through the CPU data
load buses (LD1 and LD2). The CPU data requests are mapped based on the
range of the memory address to either the internal data memory, internal
peripheral space (through the peripheral bus controller) or the external memory
interface. The data memory controller also connects the DMA to the internal data
memory and performs CPU/DMA arbitration for the on-chip data RAM.

Both the CPU and DMA can read and write 8-bit bytes, 16-bit halfwords, and
32-bit words. The data memory controller performs arbitration between the
CPU and DMA independently for each 16-bit block.

Interleaved memory organization allows the CPU to access two addresses in
memory simultaneously.

The CPU and DMA support configurable endianness. This endianness is
selected by the LENDIAN (little endian) pin on the device. This selection
applies to both the CPU and the DMA controller.

The peripheral bus controller performs arbitration between the CPU and DMA
for the on-chip peripherals. The peripherals are controlled by the CPU through
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accesses of control registers. The CPU accesses these registers through the
peripheral data bus. For data accesses, the DMA controller accesses the pe-
ripheral bus controller (PBC) directly, while the CPU accesses the PBC
through the data memory controller.
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1.5 Overview of TMS320C62xx Peripherals

Peripherals for the TMS320C62xx devices include:

� Direct memory access (DMA) controller
� Host-port interface (HPI)
� External memory interface (EMIF)
� Boot configuration
� Multichannel serial ports (MCSPs)
� Interrupt Selector
� 32-bit timers
� Power-down logic

Figure 1–1 shows the block diagram for peripherals for the TMS320C62xx
devices.

Figure 1–1. TMS320C6x Block Diagram
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The direct memory access (DMA) controller transfers data between address
ranges  in the memory map without intervention by the CPU. The DMA controller
allows movement of data to and from internal memory, internal peripherals, or
external devices to occur in the background of CPU operation. The DMA
controller has four independent programmable channels, allowing four simulta-
neous contexts for DMA operation. In addition, a fifth (auxiliary) channel allows
the DMA controller to service a request from the host port interface (HPI).

The HPI is a parallel port through which a host processor can directly access
the CPU’s memory space. The host device is the master of the interface, there-
fore increasing its ease of access by the host. The host and the CPU can ex-
change information via ’C6201 internal or external memory. In addition, the
host has direct access to memory-mapped peripherals.

The external memory interface (EMIF) supports a glueless interface to several
external devices including:

� Synchronous burst SRAM (SBSRAM)
� Synchronous DRAM (SDRAM)
� Asynchronous devices, including SRAM, ROM, and FIFOs
� An external shared-memory device

The TMS320C62xx provides a variety of boot configurations for proper device
initialization. These configurations determine what actions the ’C62xx per-
forms after device reset to prepare for initialization.

The ’C62xx multichannel serial port (MCSP) is based on the standard serial port
interface found on the TMS320C2x, ’C2xx, ’C5x, and ’C54x devices. In addition,
the port has the ability to buffer serial samples in memory automatically with the
aid of the DMA controller. It also has multichannel capability compatible with the
T1, E1, and MVIP networking standards. Like its predecessors, it provides:

� Full duplex communication
� Double buffered data registers which allow a continuous data stream
� Independent framing and clocking for receive and transmit
� Direct interface to industry standard codecs, analog interface chips

(AICs), and other serially connected A/D and D/A devices
� Either an external shift clock generation or an internal programmable

frequency shift clock
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In addition, the MCSP has the following capabilities:

� Direct interface to:
� T1/E1 framers
� ST–BUS  compliant devices
� IOM-2 compliant devices
� AC97 compliant devices
� IIS compliant devices
� SPI� devices

� Multichannel transmit and receive of up to 128 channels
� A wider selection of data sizes including 8, 12, 16, 20, 24, or 32 bits
� µ-Law and A-Law companding
� 8-bit data transfers with LSB or MSB first
� Programmable polarity for both frame synchronization and data clocks
� Highly programmable internal clock and frame generation

The ’C62xx has two 32-bit general-purpose timers that are used to:

� Time events
� Count events
� Generate pulses
� Interrupt the CPU
� Send synchronization events to the DMA controller

The ’C62xx peripheral set produces 16 interrupt sources. The CPU has 12
interrupts available for use. The interrupt selector allows you to choose which
12 of the 16 your system needs to use. The interrupt selector also allows you
to effectively change the polarity of external interrupt inputs.

The power-down logic allows reduced clocking to reduce power consumption.
Most of the operating power of CMOS logic dissipates during circuit switching
from one logic state to another. By preventing some or all of the chip’s logic
from switching, significant power savings can be realized without losing any
data or operational context.
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Internal Program Access

Describes the TMS320C6201 program memory system. This includes program
memory mode and cache modes.
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2.1 Overview

As shown in Figure 2–1, the Program Memory Controller:

� Performs CPU and DMA requests to internal program memory and neces-
sary arbitration.

� Performs CPU requests to external memory through the external memory
interface (EMIF).

� Manages the internal program memory when configured as cache.

Figure 2–1. TMS320C6x Block Diagram
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2.2 Internal Program Memory

The internal program memory includes 64K bytes of RAM or equivalently 2K
256-bit fetch packets or 16K 32-bit instructions. The CPU through the program
memory controller has a single-cycle throughput 256-bit wide connection to in-
ternal program memory.

2.2.1 Internal Program Memory Modes

The internal program memory can be utilized in four modes selected by the
Program Cache Control (PCC) field (bits 7–5) in the CPU Control and Status
Register as shown in Table 2–1. The modes are:

0. Mapped:  Depending on the memory map selected, the program memory
either is located at either address:

� 0000 0000h–0000 FFFFh in Map 1.
� 0140 0000h–0140 FFFFh in Map 0.

Refer to the Chapter 7 Boot Configuration, Reset, and Memory Map on
how to select the memory map. In mapped mode, program fetches to the
internal program memory address return the fetch packet at that address.
In any cache mode, CPU accesses to this address range returns the fetch
packet containing all NOPs. Mapped mode is the default state of the inter-
nal program memory at reset.

1. Enabled:  In cache enabled mode, any initial program fetch of an address
causes a cache miss. In a cache miss, the fetch packet is loaded from the
external memory interface (EMIF) and stored in the internal cache memory
one 32-bit instruction at a time. When all 8 instructions in the fetch packet are
received, it is sent to the CPU for execution. During this period the CPU is
halted in it entirety. The number of wait-states incurred depends on the type
of external memory used, the state of that memory, and any contention for
the EMIF with other requests such as the DMA or CPU data access. Any sub-
sequent read from a cached address will cause a cache hit and that fetch
packet is sent to the CPU from the internal program size without any wait-
states. On the change from program memory mode to cache enabled mode,
the program cache is flushed. This mode transition is the only means to flush
the cache.

2. Freeze:  During a cache freeze, the cache retains its current state. A
program read to a frozen cache is identical to a read to an enabled cache
with the exception that on a cache miss the data read from the external
memory interface is not stored in the cache. A subsequent read of the
same address will also cause a cache miss and the data will again be
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fetched from external memory. Cache freeze can ensure that critical
program data is not overwritten in the cache.

3. Bypass:  When the cache is bypassed, any program read will fetch data
from external memory. The data is not stored in the cache memory. Like
cache freeze, in cache bypass the cache retains its state. This mode en-
sures that external program data is being fetched.

Table 2–1. Internal Program Memory Modes

Program Mode
PCC
Value Description

Mapped 000 Memory mapped. Cache Disabled. 
(Reset default.)

Cache Enable 010 Cache accessed and updated on reads.

Cache Freeze 011 Cache accessed but not updated on
reads.

Cache Bypass 100 Cache not accessed or updated on reads.

Reserved Other

2.2.2 Cache Architecture

The architecture of the cache is direct mapped. The 64K byte cache contains
2K fetch packets and thus 2K frames. The width of the cache (the frame size)
is 256-bits. Each frame in the cache is one fetch packet.

2.2.2.1 Cache Usage of CPU Addresses

Figure 2–2 shows how the cache uses the fetch packet address from the CPU:

5-bit Fetch Packet Alignment:  The 5 LSBs of the address are assumed to be
zero because all program fetch requests are aligned on fetch packet bound-
aries (8 words or 32 bytes).

11-bit Tag Block Offset:  Because the cache is direct mapped, any external
address maps to only one of the 2K frame. Any two fetch packets that are an
even multiple of 64K byte addresses apart map to the same frame. Thus, bits
15:5 of the CPU address create the 11-bit block offset that determines which of
the 2K frames any particular fetch packet maps to.

10-bit Tag:  The cache assumes an a maximum external address space of
64Mbytes (from 00000000–03FFFFFF). Thus, bits 25:16 correspond to the
tag that determines the original location of the fetch packet in external memory
space. The cache also has a separate 2Kx11 tag RAM that holds all the tags.
This RAM contains the 10-bit tag plus a valid bit which is used in cache flush.
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Figure 2–2. Logical Mapping of Cache Address

31                                 26 25                      16 15                                   5 4                                     0

Outside external range.
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Tag Block Offset
Fetch Packet Alignment.

Assumed 0.

2.2.2.2 Cache Flush

A dedicated valid bit in the tag RAM indicates whether the contents of that
cache frame contains valid data. During a cache flush all these valid bits are
cleared to indicate that no cache frames have valid data. Cache flushes only
occur at the transition of the internal program memory from mapped mode to
cache enabled mode.

2.2.2.3 Frame Replacement

A cache miss is detected when the tag corresponding to the block offset of
the fetch packet address requested by the CPU does not correspond to bits
25:16 of the fetch packet address or if the valid bit at that location is clear. If
enabled, the cache loads the fetch packet into the corresponding frame, sets
the valid bit, sets the tag to bits 25:16 of the requested address, and delivers
this fetch packet to the CPU after all 8 instructions are available.

2.3 DMA Access to Program Memory

The DMA can read and write to internal program memory when configured in
memory-mapped mode. The CPU always has priority over the DMA for access
to internal program memory regardless of the value of the PRI bit for that DMA
channel. DMA accesses are postponed until the CPU stops making requests.
In a cache mode, a DMA write is ignored by the Program Memory Controller.
In a cache mode, read returns an undefined value. For both DMA reads and
writes in cache modes, the DMA is signaled that its request has completed. At
reset, the program memory system is in mapped mode. This feature allows the
DMA to bootload code into the internal program memory. See Chapter 7 Boot
Configuration, Reset, Memory Map for more information on bootloading code.

Internal Program Memory / DMA Access to Program Memory



 

 2-6



3-1

Internal Data Access

Describes the internal data memory organization, and CPU/DMA data access
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3.1 Overview

As shown inFigure 3–1, the Data Memory Controller connects:

� The CPU and Direct Memory Access Controller (DMA) to internal data
memory and performs the necessary arbitration.

� CPU to the external memory interface (EMIF).

� The CPU to the on chip peripherals through the Peripheral Bus Controller.

The peripheral bus controller performs arbitration between the CPU and DMA
for the on-chip peripherals.

Figure 3–1. TMS320C6x Block Diagram
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3.2 Data Memory Access

The Data Memory Controller services all requests to internal memory as well
as all CPU data requests. Figure 3–2 shows the directions of data flow as well
as the master (requester) and slave (resource) relationships between the
modules:

� CPU requests data reads and writes to:

1) internal data memory.
2) on-chip peripherals through the peripheral bus controller.
3) EMIF.

� DMA requests reads and writes to internal data memory.

CPU sends requests to the Data Memory Controller through the two address
buses (DA1 and DA2). Store data is transmitted through the CPU data store
buses (ST1 and ST2). Load data is received through the CPU data load buses
(LD1 and LD2). The CPU data requests are mapped based on address to either
the internal data memory, internal peripheral space through the peripheral bus
controller, or the external memory interface. The Data Memory Controller also
connects the DMA to the internal data memory and performs CPU/DMA arbitra-
tion for the on-chip data RAM.

Figure 3–2. Data Memory Controller Interconnect to Other Blocks

memory
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3.3 Internal Data Memory Organization

The 64K bytes of internal data RAM located from address 8000 0000h to
8000 FFFFh is organized as four 8K blocks of 16-bit halfwords. These blocks are
organized in an interleave on 16-bit data with each block containing successive
half-words. This interleave allows the two data ports and DMA to read neighbor-
ing 16-bit data elements without a resource conflict.

Table 3–1. Data Memory Organization

8n+0 Block 8n+2 Block 8n+4 Block 8n+6 Block

First Address 80000000
80000008
     
8000FFF0

80000001
80000009

8000FFF1

80000002
8000000A

8000FFF2

80000003
8000000B

8000FFF3

80000004
8000000C

8000FFF4

80000005
8000000D

8000FFF5

80000006
8000000E

8000FFF6

80000007
8000000F

8000FFF7

Last Address 8000FFF8 8000FFF9
DA1

8000FFFA
byte

8000FFFB
halfword

8000FFFC
word

8000FFFD 8000FFFE 8000FFFF

3.3.1 Data Alignment

Both the CPU and DMA can read and write 8-bit bytes, 16-bit halfwords, and
32-bit words. The data memory controller performs arbitration between the two
independently for each 16-bit block basis. The following data alignment restric-
tions apply:

Words:  Words are aligned on even four-byte boundaries (word-boundaries).
Words always start at a byte address where the two LSBs are 0. A word access
requires two adjacent 16-bit wide blocks.

Halfwords:  Halfwords are aligned on even two-byte boundaries (halfword
boundaries). Halfwords always start at byte addresses where the LSB is 0.
Halfword accesses require the entire 16-bit wide block.

Bytes:  There are no alignment restrictions related to byte accesses. Although
arbitration is done on 16-bit wide blocks, the blocks still have byte enables to
support byte-wide accesses. However, a byte access requires the entire
16-block the byte address maps to.
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3.3.2 Dual CPU Accesses to Internal Memory

Interleaved memory organization allows two CPU simultaneous memory
accesses. In one CPU cycle, two simultaneous accesses to two different internal
memory blocks occur without wait-states. Two simultaneous accesses to the
same internal memory block stall the entire CPU pipeline for one CPU clock, pro-
viding two accesses in two CPU clocks. These rules apply regardless of whether
the accesses are loads or stores. Loads and stores from the same execute pack-
et are seen by the Data Memory Controller during the same CPU cycle. Loads
and stores from future or previous CPU cycles do not cause wait-states for the
internal data memory accesses in the current cycle. Thus, internal data memory
access only causes a wait-state when conflicts occur between instructions in the
same fetch packet access the same 16-bit wide block. This condition is called an
internal memory conflict. Here, the Data Memory Controller stalls the CPU for one
additional CPU clock, serializes the accesses, and performs each access sepa-
rately. In prioritizing the two accesses, any load occurs before any store access.
If both accesses are loads or both accesses are stores, the access from DA1
takes precedence over the access from DA2. Figure 3–3 shows what access
conditions cause internal memory conflicts given the when the CPU makes two
data accesses (on DA1 and DA2).

Figure 3–3. Conflicting Internal Memory Accesses

DA1 Byte Halfword Word

DA2 2:0 000 001 010 011 100 101 110 111 000 010 100 110 000 110

Byte 000

001

010

011

100

101

110

111

Halfword 000

010

100

110

word 000

110

Note: Conflicts shown in shaded areas.
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3.3.3 DMA Accesses to Internal Memory

If a DMA access to internal memory does not require the same 16-bit banks
used by any CPU accesses, the DMA operation occurs in the background. You
can use Figure 3–3 to determine DMA versus CPU conflicts. Assume that one
axis represents the DMA access and the other represents the CPU access
from one CPU data port. Then, perform this analysis again for the other data
port. If both comparisons yield no conflict, then there is no CPU/DMA internal
memory conflict. Here, the CPU access and DMA access occur in the back-
ground of each other. If either comparison yields a conflict, then there is a CPU/
DMA internal memory conflict. In this case, the priority is resolved by the PRI
bit of the DMA Channel as described in Chapter 4 of this reference guide. If
the DMA Channel is configured as higher priority than the CPU (PRI = 1), any
CPU accesses are postponed until the DMA accesses complete and the CPU
incurs a one CPU clock wait state. If both CPU ports and the DMA access the
same memory block, the number of wait-states increases to two. If the DMA
has multiple consecutive requests to the block required by the CPU, the CPU
is held off until all DMA accesses to the necessary blocks complete. In con-
trast, if the CPU is higher priority (PRI = 0), then the DMA access is postponed
until the both CPU data ports stop accessing that block.  In this configuration
a DMA access request never causes a wait-state.

3.3.4 Data Endianness

Two standards for data ordering in byte-addressable microprocessors exist:

� Little endian
� Big endian

The CPU and DMA support a programmable endianness. This endianness is
selected by the LENDIAN (Little ENDIAN) pin on the device. LENDIAN = 1 and
LENDIAN = 0 selects little endian and big endian, respectively. This selection
applies to both the CPU and the DMA. Byte ordering within word and half-word
data resident in memory is identical for little endian and big endian data.
Table 3–2 shows which bits of a data word in memory are loaded into which
bits of a destination register for all possible CPU data loads from big or little
endian data. The data in memory is assumed to be the same data that is in the
register results from the LDW instruction in the first row. Table 3–3 and
Table 3–4 show which bits of a register are stored in which bits of a destination
memory word for all possible CPU data stores from big and little endian data.
The data in the source register is assumed to be the same data that is in the
memory results from the STW instruction in the first row.
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Table 3–2. Register Contents After Little Endian or Big Endian Data Loads

Instruction
Address Bits

(1:0)
Big Endian 
Register Result

Little Endian 
Register Result

LDW 00 BA987654h BA987654h

LDH 00 FFFFBA98h 00007654h

LDHU 00 0000BA98h 00007654h

LDH 10 00007654h FFFFBA98h

LDHU 10 00007654h 0000BA98h

LDB 00 FFFFFFBAh 00000054h

LDBU 00 000000BAh 00000054h

LDB 01 FFFFFF98h 00000076h

LDBU 01 00000098h 00000076h

LDB 10 00000076h FFFFFF98h

LDBU 10 00000076h 00000098h

LDB 11 00000054h FFFFFFBAh

LDBU 11 00000054h 000000BAh

Note: The contents of the word in data memory at location “xxxx xx00” is BA987654h.

Table 3–3. Memory Contents After Little Endian or Big Endian Data Stores

Instruction Address Bits (1:0)
Big Endian
Memory Result

Little Endian
Memory Result

STW 00 BA987654h BA987654h

STH 00 76541970h 01127654h

STH 10 01127654h 76541970h

STB 00 54121970h 01121954h

STB 01 01541970h 01125470h

STB 10 01125470h 01541970h

STB 11 01121954h 54121970h

Note: The contents of the word in data memory at location “xxxx xx00” before the ST instruc-
tion executes is 01121970h. The contents of the source register is BA987654h.
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Table 3–4. Memory Contents After Little Endian or Big Endian Data Stores

Access
Type

Address Bits
(1:0)

Big Endian
Register

Little Endian
Memory Result

Word 00 XXXXXXXX XXXXXXXX

Halfword 00 XXXX???? ????XXXX

Halfword 10 ????XXXX XXXX????

Byte 00 XX?????? ??????XX

Byte 01 ??XX???? ????XX??

Byte 10 ????XX?? ??XX????

Byte 11 ??????XX XX??????

Note: X indicates nybbles correctly written, ? indicates nybbles with undefined value after
write

3.4 Peripheral Bus

The peripherals described in this reference guide are controlled by CPU and
DMA through accesses of control registers. The CPU and DMA access these
registers through the peripheral data bus. The DMA directly accesses the Pe-
ripheral Bus Controller, whereas CPU accesses it through the Data Memory
Controller.

3.4.1 Byte and Halfword Access

The peripheral bus controller converts all peripheral bus accesses to word
accesses. However, on read accesses both the CPU and DMA can extract the
correct portions of the word to perform byte and halfword accesses properly.
However, any side-effects by causing a peripheral control register read will
occur regardless of which bytes are read. In contrast, for byte or halfword
writes, the values the CPU and DMA only provide correct values in the enabled
bytes. The values guaranteed to be correct are shown in Table 3–4. Thus,
undefined results will be written to the non-enabled bytes. If the user is not
concerned about the values in the disabled bytes, this is acceptable. Other-
wise, you should only access the peripheral registers via word accesses.

Internal Data Memory Organization / Peripheral Bus
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3.4.2 CPU Wait States

Isolated peripheral bus controller accesses from the CPU causes 4 CPU wait
states. These wait-states are inserted to allow pipeline registers to break-up
the paths between traversing the on-chip distances between the CPU and
peripherals as well as for arbitration time. On consecutive accesses, an
access after the first only require 3 CPU wait-states due to the pipelined nature
of the Data Memory Controller’s interface to the peripheral bus controller.

3.4.3 CPU/DMA Arbitration

As shown in Figure 3–2,  the Peripheral Bus Controller performs arbitration
between the CPU and DMA for the peripheral bus. Like internal data access,
the PRI bits in the DMA determine the priority between the CPU and the DMA.
If a conflict occurs between the CPU (via the Data Memory Controller) the
lower priority requester is held off until the higher priority requester completes
all accesses to the peripheral bus controller. The peripheral bus is arbitrated
as a single resource, thus the lower priority resource is blocked from accessing
all peripherals, not just the one accessed by the higher priority requester.

Peripheral Bus
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Describes the direct memory access channels and registers available for the
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4.1 Overview

The direct memory access (DMA) controller transfers data between regions
in the memory map without intervention by the CPU. The DMA allows move-
ment of data to and from internal memory, internal peripherals, or external de-
vices to occur in the background of CPU operation. The DMA has four inde-
pendent programmable channels allowing four different contexts for DMA op-
eration. Each DMA channel can be independently configured to transfer data
elements of different sizes: 8-bit bytes, 16-bit half-words, or 32-bit words. In
addition a fifth (auxiliary) channel allows the DMA to service requests from the
host port interface(HPI). In discussing DMA operations several terms are im-
portant:

� Read transfer:  The DMA reads the data element from a source location
in memory.

� Write transfer:  The DMA writes the data element that was read during a
read transfer to its destination location in memory.

� Element transfer:  The combined read and write transfer for a single data
element.

� Frame transfer:  Each DMA channel has an independently programmable
number of elements per frame. In completing a frame transfer, the DMA
moves all elements in a single frame.

� Block transfer:  Each DMA channel also has an independently program-
mable number of frames per block. In completing a block transfer, the
DMA moves all frames it has been programmed to move.

The DMA has the following features:

� Background operation:  The DMA operates independently of the CPU.

� High throughput:  Elements can be transferred at the CPU clock rate.
See Section 4.11.

� Four channels:  The DMA can keep track of the contexts of four indepen-
dent block transfers. See Section 4.2.

� Auxiliary channel:  This simple channel allows the host port to make re-
quests into the CPU’s memory space. This chapter discusses how the auxil-
iary channel requests are prioritized relative to other channels and the CPU.
Detailed explanation of how it is used in conjunction with a peripheral is
found in that peripheral’s documentation.

� Split operation: A single channel maybe used to simultaneously perform
both the receive and transmit element transfers from or to a peripheral, ef-
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fectively acting like two DMA channels without the additional cost. See
Section 4.8.

� Multiframe transfer:  Each block transfer can consist of multiple frames
of a fixed programmable size. See Section 4.5.

� Programmable priority:  Each channel has independently programmable
priorities versus the CPU for each of the memory-mapped resources.

� Programmable address generation:  Each channel’s source and destina-
tion address registers can have configurable indexes through memory on
each read and write transfer. The address may remain constant, increment,
decrement, or be adjusted by a programmable value. The programmable
value allows a distinct index for the last transfer in a frame and for the pre-
ceding transfers. See subsection 4.7.1.

� Full-address 32-bit address range:  The DMA can access any region in
the memory map:

� The on-chip data memory.

� The on-chip program memory when mapped into memory space
rather than being utilized as cache.

� On-chip peripherals.

� The external memory interface (EMIF).

� Programmable width transfers:  Each channel can be independently
configured to transfer either bytes, 16-bit half-words, or 32-bit words. See
subsection 4.7.3.

� Autoinitialization:  Once a block transfer is complete, a DMA channel
may automatically re-initialize itself for the next block transfer. See sub-
section 4.4.1.

� Event synchronization: Each read, write, or frame transfer may be initiated
by selected events. See Section 4.6.

� Interrupt generation:  On completion of each frame transfer or of an entire
block transfer as well a on various error conditions, each DMA channel may
send an interrupt to the CPU. See Section 4.10.
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Figure 4–1. DMA Controller Interconnect to TMS320C6x; Memory Mapped Modules
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4.2 DMA Registers

The DMA registers are essential in configuring the operation of the DMA.
Table 4–1 and Table 4–2 show how the DMA control registers are mapped into
the CPU’s memory space. These registers include the DMA global data, count
reload, index, and addess registers as well as number of independent control
registers for each channel. The DMA global data registers are useful for a vari-
ety of functions. (Figure 4–2 and Figure 4–3).
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Table 4–1. DMA Control Registers by Address

Hex Byte
Address Name Section

01840000 DMA channel 0 primary control 4.2.1

01840004 DMA channel 2 primary control 4.2.1

01840008 DMA channel 0 secondary control 4.10

0184000C DMA channel 2 secondary control 4.10

01840010 DMA channel 0 source address 4.7

01840014 DMA channel 2 source address 4.7

01840018 DMA channel 0 destination address 4.7

0184001C DMA channel 2 destination address 4.7

01840020 DMA channel 0 transfer counter 4.5

01840024 DMA channel 2 transfer counter 4.5

01840028 DMA global reload register A 4.2

0184002C DMA global reload register B 4.2

01840030 DMA global index register A 4.2

01840034 DMA global index register B 4.2

01840038 DMA global address register A 4.2

0184003C DMA global address register B 4.2

01840040 DMA channel 1 primary control 4.2.1

01840044 DMA channel 3 primary control 4.2.1

01840048 DMA channel 1 secondary control 4.10

0184004C DMA channel 3 secondary control 4.10

01840050 DMA channel 1 source address 4.7

01840054 DMA channel 3 source address 4.7

01840058 DMA channel 1 destination address 4.7

0184005C DMA channel 3 destination address 4.7

01840060 DMA channel 1 transfer counter 4.5

01840064 DMA channel 3 transfer counter 4.5

01840068 DMA global address register C 4.2

0184006C DMA global address register D 4.2

01840070 DMA auxiliary control register 4.9.1
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Table 4–2. DMA Control Registers by Register Name

Name
Hex Byte
Address Section

DMA channel 0 destination address 01840018 4.7

DMA channel 0 primary control 01840000 4.2.1

DMA channel 0 secondary control 01840008 4.10

DMA channel 0 source address 01840010 4.7

DMA channel 0 transfer counter 01840020 4.5

DMA channel 1 destination address 01840058 4.7

DMA channel 1 primary control 01840040 4.2.1

DMA channel 1 secondary control 01840048 4.10

DMA channel 1 source address 01840050 4.7

DMA channel 1 transfer counter 01840060 4.5

DMA channel 2 destination address 0184001C 4.7

DMA channel 2 primary control 01840004 4.2.1

DMA channel 2 secondary control 0184000C 4.10

DMA channel 2 source address 01840014 4.7

DMA channel 2 transfer counter 01840024 4.5

DMA channel 3 destination address 0184005C 4.7

DMA channel 3 primary control 01840044 4.2.1

DMA channel 3 secondary control 0184004C 4.10

DMA channel 3 source address 01840054 4.7

DMA channel 3 transfer counter 01840064 4.5

DMA auxiliary control register 01840070 4.9.1

DMA global reload register A 01840028 4.2

DMA global reload register B 0184002C 4.2

DMA global index register A 01840030 4.2

DMA global index register B 01840034 4.2

DMA global address A 01840038 4.2

DMA global address B 0184003C 4.2

DMA global address C 01840068 4.2

DMA global address D 0184006C 4.2
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Figure 4–2. DMA Global Data Register Diagram
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4.2.1 DMA Channel Control Registers

The DMA channel primary (Figure 4–4) and secondary control register
(Figure 4–5) contain bit-fields that control each individual DMA channel indepen-
dently. These fields are described in Table 4–3 and Table 4–4.

Figure 4–4. DMA Channel Primary Control Register

31                   30 29 28 17 26 25 24 23                                                   19 18             16

DST RELOAD SRC RELOAD EMOD FS TCINT PRI WSYNC RSYNC

RW, +0 RW, +0 RW,+0 RW,+0 RW, +0 RW, +0 RW, +0 RW, +0

15                         14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSYNC INDEX
CNT

RELOAD
SPLIT ESIZE DST DIR SRC DIR STATUS START

RW, +0 R, +0 RW, +0 RW, +0 RW, +0 RW, +0 R, +0 RW, +0
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Figure 4–5. DMA Channel Secondary Control Register
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RW,
+0

RW,
+0

RW,
+0

Table 4–3. DMA Channel Secondary Control Register Bitfields

Bitfield Description Section

SX COND
FRAME COND
LAST COND
BLOCK COND
(R/W)DROP COND

DMA condition. See 4.10 for description.

COND = 0, condition not detected
COND = 1, condition detected

4.10

SX IE
FRAME IE
LAST IE
BLOCK IE
(R/W)DROP IE

DMA condition interrupt enable. See 4.10.1 for description.

IE = 0, associated condition doesn’t enable DMA channel interrupt
IE = 1, associated condition enables DMA channel interrupt

4.10.1

(R/W)SYNC STAT Read, write synchronization status
Write 1 to set associated status.

STAT = 0, synchronization not received
STAT = 1, synchronization received

4.6.1

DMAC EN DMAC pin control

DMAC EN = 000b, DMAC pin held low
DMAC EN = 001b, DMAC pin held high
DMAC EN = 010b, DMAC reflects RSYNC STAT
DMAC EN = 011b, DMAC reflects WSYNC STAT
DMAC EN = 100b, DMAC reflects FRAME COND
DMAC EN = 101b, DMAC reflects BLOCK COND
DMAC EN = other, reserved

4.12

(R/W)SYNC CLR Read, write synchronization status clear

Read as 0, write 1 to clear associated status.

4.6.1
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Table 4–4. DMA Channel Primary Control Register Field Definitions 

Bitfield Description Section

START START = 00b, stop
START = 01b, start, without auto-initialization
START = 10b, pause
START = 11b, start with auto-initialization

4.4

STATUS STATUS = 00b, stopped
STATUS = 01b, running, without auto-initialization
STATUS = 10b, paused
STATUS = 11b, running, with auto-initialization

4.4

SRC DIR,
DST DIR

Source/destination address modification after element transfers

(SRC/DST) DIR = 00b, no modification.
(SRC/DST) DIR = 01b, increment by element size in bytes
(SRC/DST) DIR = 10b, decrement by element size in bytes.
(SRC/DST) DIR = 11b, adjust using DMA global data register selected by INDEX.

4.7.1

RSYNC,
WSYNC

Read transfer/write transfer synchronization.

(R/W)SYNC = 00000b, no synchronization.
(R/W)SYNC = other sets synchronization event

4.6

FS Frame synchronization

FS = 0, disable,
FS = 1, RSYNC event used to synchronize entire frame.

4.6

TCINT Transfer controller interrupt.

TCINT = 0 interrupt disabled
TCINT = 1 interrupt enabled

4.10

ESIZE Element size

ESIZE = 00b, 32-bit
ESIZE = 01b, 16-bit
ESIZE = 10b, 8-bit
ESIZE = 11b, reserved

4.7.3

PRI Priority mode: DMA v. CPU

PRI = 0, CPU priority
PRI = 1, DMA priority

4.9

SPLIT Split channel mode.

SPLIT = 00b disabled 
SPLIT = 01b, enabled, use DMA global address register A as split address.
SPLIT = 10b, enabled, use DMA global address register B as split address.
SPLIT = 11b, enabled, use DMA global address register C as split address.

4.8
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Table 4–4. DMA Channel Primary Control Register Field Definitions (Continued)

Bitfield SectionDescription

CNT RELOAD DMA channel transfer counter reload for auto-initialization and multi-frame trans-
fers

CNT RELOAD = 0, Reload with DMA global count reload register 0
CNT RELOAD = 1, Reload with DMA global count reload register 1

4.4.1.1

INDEX Selects the DMA global data register to use as a programmable index.

INDEX = 0, use DMA global index register 2
INDEX = 1, use DMA global index register 3

4.7.2

EMOD Emulation mode

EMOD = 0, DMA channel keeps running during an emulation halt
EMOD = 1, DMA channel paused during an emulation halt

4.13

SRC RELOAD,
DST RELOAD

DMA channel source/destination address reload for auto-initialization

SRC/DST RELOAD = 00b, do not reload during auto-initialization.
SRC/DST RELOAD = 01b, use DMA global address register B as reload.
SRC/DST RELOAD = 10b, use DMA global address register C as reload.
SRC/DST RELOAD = 11b, use DMA global address register D as reload.

4.4.1.1
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4.3 Memory Map

The DMA assumes the superset of the device memory map shown in Chapter 7,
Boot Configuration, Reset, and Memory Map. Requests are sent to one of four
resources:

1) External memory interface
2) Internal program memory
3) Internal peripheral bus
4) Internal data memory

The location of the source and destination are computed at the beginning for a
block transfer. Thus, the source address is assumed to point to one of these four
spaces throughout a block transfer. This constraint also applies to the destination
address.
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4.4 Initiating Block Transfer

Each DMA channel may be started independently. This may be done either
manually through direct CPU access or through auto-initialization. In addition,
each DMA channel may be stopped or paused independently through direct
CPU access.

Manual Start Operation:  To start DMA operation for a particular channel, once
all other DMA control registers are written to their desired values, the DMA
channel control register should be written to its desired value with START = 01b.
Writing this value to a DMA channel that has already been started has no effect.

Pause Operation:  Once started, a DMA channel may then be paused by writing
START = 10b. When paused, the DMA channel completes any write transfers
whose read transfer requests have completed. Also, if the DMA channel has all
of the necessary read synchronizations, one more element additional element
transfer will be allowed to complete. Once paused, the value on STATUS is 10b.

Stop Operation:  The DMA may also be stopped by writing START = 00b. In
this case, the DMA channel stops immediately and discards any data held inter-
nally from completed read transfers. The actual status of a DMA channel may
be observed by reading the START field in the DMA channel control register.
Once a DMA transfer is complete, unless auto-initialization is enabled, the DMA
channel returns to the stopped state and STATUS = 00b.

4.4.1 Autoinitialization

The DMA can automatically reinitialize itself after completion of a block transfer.
Some of the DMA control registers can be pre-loaded for the next block transfer
through reload registers. Selected DMA global data registers act as reload regis-
ters. Using this capability some of the parameters of the DMA channel can be set
well in advance of the next block transfer. Auto-initialization allows:

� Continuous Operation:  Continuous operation allows the CPU a long slack
time during which it can reconfigure the DMA for a subsequent transfer.
Normally, the CPU would have to reinitialize the DMA immediately after
completion of the last write transfer in the current block transfer and before
the first read synchronization for the next block transfer. In general, with the
reload registers, it can reinitialize these values for the next block transfer
anytime after the current block transfer begins.

� Repetitive Operation:  As a special case of continuous operation, once
a block transfer completes, the DMA repeats the previous block transfer.
In this case, the CPU does not pre-load the reload registers with new
values for each block transfer. Instead, the CPU only loads the registers
before the first block transfer.
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Enabling Auto-Initialization: By writing START = 11b, in the DMA channel
control register, auto-initialization is enabled. In this case, after completion of
a block transfer, the DMA channel is restarted and the selected DMA channel
registers are reloaded. If restarting after a pause, this START must be re-writ-
ten as 01b for auto-initialization to be enabled.

4.4.1.1 DMA Channel Reload Registers

For auto-initialization, the successive block transfers are assumed to be similar.
Thus, the reload values are only selectable for those registers that are modified
during a block transfer: the transfer counter and address registers. Thus, the
DMA channel transfer counter as well as the DMA channel source and destina-
tion address registers have associated reload registers, as selected by the asso-
ciated RELOAD fields in the DMA channel primary control register (Figure 4–4).
The reload registers are stored in particular DMA global address registers.

Note that it is possible to not reload the source or destination address register
in auto-initialization mode. This capability allows you to have a register main-
tain its value that did not change during block transfer. Thus, you do not have
to dedicate a DMA global data register to a value that was static during block
transfer. A single channel may use the same value for multiple channel regis-
ters. For example, in split mode, the source and destination address maybe
the same. Similarly, multiple channels may use the same reload values. For
example, two channels may have the same transfer count reload value.

Upon completion of a block transfer, these registers are reloaded with the
associated reload register. Note that in the case of the DMA channel transfer
counter register, reload occurs after the end of each frame transfer, not just
after the end of the entire block transfer. The reload value for the DMA channel
transfer counter is necessary whenever multi-frame transfers are configured,
not just when auto-initialization is enabled.

As discussed in Section 4.11, the DMA may allow read transfers to get ahead
of write transfers and provide the necessary buffering to facilitate this capability.
To support this, the reload which is necessary at the end of blocks and frames
occurs independently for the read (source) and write (destination) portions of
the DMA channel. Similarly, in the case of split channel operation described in
Section 4.8, the source and destination address are independently reloaded
when the associated transmit or receive element transfers are completed.
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The DMA channel transfer counter reload can only be rewritten by the user after
the next to last frame in the current block transfer completes. Otherwise, the new
reload values would affect subsequent frame boundaries in the current block
transfer. However, if the frame size is the same for the current and next block
transfers, this restriction is not relevant. See Section 4.5 for more explanation of
the DMA channel transfer counter.
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4.5 Transfer Counting

The DMA channel transfer counter (Figure 4–6) contains bitfields that repre-
sent the number of frames and the number of elements per frame to be trans-
ferred. Figure 4–7 shows the DMA global count reload register.

FRAME COUNT:  This 16-bit unsigned value sets the total number of frames in
the block transfer. The maximum number of frames per block transfer is 65535.
This counter is decremented upon the completion of the last read transfer in a
frame transfer. Once the last frame is transferred, the entire counter is reloaded
with the DMA global data register selected by the CNT RELOAD field in the
DMA channel primary control register (See Section 4.4.1.1). Also note that initial
values of 0 and 1 to FRAME COUNT have the same effect of transferring a
single frame.

ELEMENT COUNT:  This 16-bit unsigned value sets the number of elements
per frame. This counter is decremented after the read transfer of each
element. The maximum number of elements per frame transfer is 65535. Once
the last element in each frame, is reached, ELEMENT COUNT is reloaded with
the 16 LSBs of the DMA global count reload register selected by the CNT RE-
LOAD field in the DMA channel primary control register. This reloading is
unaffected by auto-initialization mode. Before block transfer begins, the counter
and selected DMA global data register must be loaded with the same 16 LSBs
to assure that the first and remaining frames have the same number of elements
per frame. In any multi-frame transfer, a reload value must always be specified,
not just when auto-initialization is enabled. If the element count is initialized as 0,
operation is undefined.

Figure 4–6. DMA Channel Transfer Counter

31                                                                                            16 15                                                                                            0

FRAME COUNT ELEMENT COUNT

RW, +0 RW, +0

Figure 4–7. DMA Global Count Reload Register Used As Transfer Counter Reload

31                                                                                            16 15                                                                                          0

FRAME COUNT RELOAD ELEMENT COUNT RELOAD

RW, +0 RW, +0
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4.6 Synchronization: Triggering DMA Transfers

Synchronization allows DMA transfers to be triggered by events such as inter-
rupts from internal peripherals or external pins. Three types of synchronization
may be enabled for each channel:

1) Read synchronization:  Each read transfer waits for the selected event
to occur before proceeding.

2) Write synchronization:  Each write transfer waits for the selected event
to occur before proceeding.

3) Frame synchronization:  Each frame transfer waits for the selected event
to occur before proceeding.

Selection of Synchronization Events:  The events are selected by the RSYNC
and WSYNC fields in the DMA channel primary control register. If FS = 1 in this
register, then the event selected by RSYNC enables an entire frame. Up to 31
events are available. If the value of these fields is set to 00000b then no synchro-
nization is necessary. In this case, the read, write, or frame transfers occur as
soon as the resource is available to that channel. The association between values
in these fields to events is shown in Table 4–5. Note that this is very similar to
the fields in the interrupt selector. See section 10.5, Configuring the Interrupt
Selector. One difference is that the MCSP generates separate interrupts and
DMA synchronization events. The only other difference is the location of
DSPINT in the encoding.

Table 4–5. Synchronization Events

Event Number
(Binary) Event Acronym Event Description

00000 None No synchronization

00001 TINT0 Timer 0 interrupt

00010 TINT1 Timer 1 interrupt

00011 SD_INT EMIF SDRAM timer interrupt

00100 EXT_INT4 External interrupt pin 4

00101 EXT_INT5 External interrupt pin 5

00110 EXT_INT6 External interrupt pin 6

00111 EXT_INT7 External interrupt pin 7

01000 DMA_INT0 DMA channel 0 interrupt

01001 DMA_INT1 DMA channel 1 interrupt
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Table 4–5. Synchronization Events (Continued)

Event Number
(Binary) Event Acronym Event Description

01010 DMA_INT2 DMA channel 2 interrupt

 01011 DMA_INT3 DMA channel 3 interrupt

01100 XEVT0 MCSP 0 transmit event

01101 REVT0 MCSP 0 receive event

01110 XEVT1 MCSP 1 transmit event

01111 REVT1 MCSP 1 receive event

10000 DSPINT Host port host to DSP interrupt

Other Reserved

4.6.1 Latching of DMA Channel Event Flags

The DMA channel secondary control register (Table 4–3) contains STAT and
CLR fields for read and write synchronization events.

Latching of DMA Synchronization Events:  An inactive to active transition of
the selected event is latched by each DMA channel. The occurrence of this transi-
tion causes the associated STAT field to be set in the DMA channel secondary
control register. Note that if no synchronization is selected the STAT bit is always
read as 1. Also, note that a single event can trigger multiple actions.

User Clearing and Setting of Events:  By clearing pending events before
starting a block transfer you can force the DMA channel to wait for the next
event. Conversely, by setting events before starting a block transfer you can
force the synchronization events necessary for the first element transfer. You
may clear or set events (and thus the related STAT bit) by writing 1 to the a
corresponding CLR or STAT field, respectively. Note that writing a zero to
either of these bits has no effect. Also, the CLR bits are always read as 0 and
have no associated storage. Separate bits for setting or clearing are provided
to allow clearing of some bits without setting others and vice-versa. Note that
user manipulation of events has priority over any simultaneous automated
setting or clearing of events.
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4.6.2 Automated Event Clearing

The latched STAT for each synchronizing event is only cleared when any
action associated with that event completes. Events are cleared as quickly as
possible to reduce the minimum time between synchronizing events. This
capability effectively increases the throughput at which events can be recog-
nized. This is described in detail for each type of synchronization below:

� Clearing read synchronization condition:  The latched condition for
read synchronization is cleared when the DMA completes the request for
the associated read transfer.

� Clearing write synchronization condition:  The latched condition for
write synchronization is cleared when the DMA completes the request for
the associated write transfer.

� Clearing frame synchronization condition:  Frame synchronization
clears the RSYNC STAT field when the DMA completes the request for the
first read transfer in the new frame.
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4.7 Address Generation
For each channel, the DMA performs address computation for each read transfer
and write transfer. The DMA allows creation of a variety of data structures. For
example, the DMA can traverse an array incrementing through every nth element.
Also, it can be programmed to effectively treat the various elements in a frame
as coming from separate sources and group each source’s data together.

The DMA channel source address and destination address registers
(Figure 4–8 and Figure 4–9) hold the addresses for the next read transfer and
write transfer, respectively.

Figure 4–8. DMA Channel Source Address Register
31                                                                                                                                                                                                0

SOURCE ADDRESS

RW, +x

Figure 4–9. DMA Channel Destination Address Register
31                                                                                                                                                                                                0

DESTINATION ADDRESS

RW, +x

4.7.1 Basic Address Adjustment

As shown in Figure 4–5, the SRC DIR and DST DIR fields can set the index
to increment, to decrement, or to not effect the DMA channel source and des-
tination address registers, respectively. By default, these values are set to 00b
to disable any incrementing or decrementing. If incrementing or decrementing
is enabled, then address adjustment amount is by size of the element in bytes.
For example, if the source address is set to increment and 16-bit half-words
are being transferred, then the address is incremented by 2 after each read
transfer.

4.7.2 Address Adjustment With the DMA Channel Index Registers

As shown in Figure 4–10, the SRC DIR and DST DIR fields can independently
allow you to select a particular DMA global index register to determine the
address adjustment. The particular DMA global index register is selected via
the INDEX field in the DMA channel primary control register. Unlike basic
address adjustment, this mode allows different adjustment amount depending
on whether or not the element transfer is the last in the current frame. The
normal adjustment value (ELEMENT INDEX) is contained in the 16 LSBs of
the selected DMA global data register. The adjustment value (FRAME INDEX)
for the end of the frame, is determined by the 16 MSBs of the selected DMA
global data register. Both of these fields contain signed 16-bit values. Thus,
the index amounts can range from –32768 to 32767.
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Figure 4–10. DMA Global Index Register

31                                                                                            16 15                                                                                            0

FRAME INDEX ELEMENT INDEX

RW, +0 RW, +0

These fields affect address adjustment as follows.

� ELEMENT INDEX:  For element transfers, except the last one in a
frame, ELEMENT INDEX determines the amount to be added to the
DMA channel source for the destination address register as selected by
the SRC DIR or DST DIR field after each read or write transfer, respec-
tively.

� FRAME INDEX:  If the read or write transfer is the last in a frame, FRAME
INDEX (and not the ELEMENT INDEX) field is used for address adjustment.
This adjustment occurs in both single frame and multi-frame transfers.

4.7.3 Element Size, Alignment, and Endianness

Using the ESIZE field in the DMA channel control register, the user may configure
the DMA to transfer 8-bit bytes, 16-bit halfwords, or 32-bit words on each transfer.
The following registers and bitfields must be loaded with properly aligned values:

� DMA channel source and destination address registers and any associat-
ed reload registers.

� ELEMENT INDEX

� FRAME INDEX

In the case of word transfers, these registers must contain values that are multi-
ples of 4, thus aligned on a word address. In the case of half-word transfers they
must be multiples of 2, thus aligned on a half-word address. If unaligned values
are loaded, operation is undefined. There is no alignment restriction for byte
transfers. All accesses to program memory must be 32-bits in width. Also, you
must be aware of the endianness when trying to access a particular 8-bit or 16-bit
field within a 32-bit register. For example, in little endian, an address ending in 00b
select the LSbyte whereas 11b selects the LSbyte in big endian.
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4.7.4 Example: Using Frame Index to Reload Addresses

In an auto-initialized, single frame block transfer the FRAME index can be
used in place of a reload register to re-compute the next address. In the
following example, a single frame transfer moves 10 bytes from a static exter-
nal address to alternating locations (skip one byte):

� SRC DIR = 00b, static source address.

� DST DIR = 11b, programmable index value

� ELEMENT INDEX = 10b, 2 byte destination stride

� FRAME INDEX = 9x2 = 18 = 10010b, correct by –18 byte locations to re-
start destination at same place.

4.7.5 Example: Transferring a Large Single Block

The ELEMENT COUNT with the FRAME COUNT can be used in conjunction
to effectively allow single frame block transfers of greater than 65535 in size.
Here, the product of the element count and frame count can form a larger effec-
tive element count. The following must be performed:

� If the address is set to be adjusted using a programmable value (DIR = 11b),
the FRAME INDEX must equal the ELEMENT INDEX if the address adjust-
ment is determined by a DMA global index register. This applies to both
source and destination addresses. If the address is not set to be adjusted
by a programmable value, this constraint does not apply because by default
the same address adjustment occurs at element and frame boundaries.

� Frame synchronization must be disabled (FS = 0 in the DMA channel primary
control register). This prevents requirements for synchronization in the
middle of the large block.

� The number of elements in the first frame is Ei. The number of elements
in successive frames is ((F–1) x Er). The effective element count will be
((F–1) x Er) + Ei.

Where:

F  = The initial value of the FRAME COUNT
Er  = ELEMENT COUNT Reload value
Ei  = initial value of the ELEMENT COUNT

Thus, to transfer 128K + 1 elements, one could set F = 5, Er = 32K, and Ei = 1.
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4.7.6 Example: Sorting

The following procedure is used to have transfers located in memory by ordinal
location within a frame (i.e. the first transfer of the first frame followed by the
first transfer of the second frame):

� ELEMENT INDEX should be set to: F x S.
� FRAME INDEX be set to: –(((E–1)x F)–1)x S

Where:

E = the initial value of ELEMENT COUNT (the number of elements
per frame) as well as the ELEMENT COUNT RELOAD.

F  = the initial value of FRAME COUNT (the total number of frames).

S  = the element size in bytes.

Consider a transfer with three frames (F = 3) of four half-word elements
each (E = 4, S = 2). This corresponds to ELEMENT INDEX = 3x2 = 6 and
FRAME INDEX = –(((4–1)x3) –1)x2 = –16. Assume that the source ad-
dress is not modified and the destination increments starting at
0x80000000. Table 4–6 and Table 4–7 show how this sorting works for this
example.

Table 4–6. Sorting Example in Order of DMA Transfers

Frame Element Address Post Adjustment

0 0 0x80000000 +6

0 1 0x80000006 +6

0 2 0x8000000C +6

0 3 0x80000012 –16

1 0 0x80000002 +6

1 1 0x80000008 +6

1 2 0x8000000E +6

1 3 0x80000014 –16

2 0 0x80000004 +6

2 1 0x8000000A +6

2 2 0x80000010 +6

2 3 0x80000016 –16
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Table 4–7. Sorting Grouping Ordered By Address

Frame Element Address

0 0 0x80000000

1 0 0x80000002

2 0 0x80000004

0 1 0x80000006

1 1 0x80000008

2 1 0x8000000A

0 2 0x8000000C

1 2 0x8000000E

2 2 0x80000010

0 3 0x80000012

1 3 0x80000014

2 3 0x80000016
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4.8 Split Channel Operation
Split channel operation allows a single DMA channel to provide the capability
of two channels to service both the input (receive) and output (transmit)
streams from an external or internal peripheral with a fixed address.

4.8.1 Split Address Generation

The DMA global address register selected by the SPLIT field in the DMA pri-
mary control register determines the address of the peripheral that is to be ac-
cess for split transfer:

� Split Source Address:  This address is the source for the input stream to
the ’C6x. The selected DMA global address register contains this split
source address.

� Split Destination Dddress:
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� Receive element transfer

1) Receive read transfer:  Data is read from the split source address.
This event is synchronized as indicated by the RSYNC field.

2) Receive write transfer:  Data from the receive read transfer is written
to the destination address. The destination address is then adjusted
as configured. This event is not synchronized.

Note, since only a single element count and frame count exists per channel,
the element count and the frame count are the same for both the received and
the transmitted data. For split operation to work properly, both the RSYNC and
WSYNC fields must be set to synchronization events. Also, frame synchro-
nization must be disabled in split mode.

For all transfers the above sequence is maintained. However, the transmit
transfers do not have to wait for all previous receive element transfers to com-
plete before proceeding. Therefore, it is possible for the transmit stream to get
ahead of the receive stream. The DMA channel transfer counter decrements
(or reinitialize) after the associated transmit transfer completes. However,
re-initialization of the source address register occurs after all transmit element
transfers complete. This configuration works as long as transmit transfers do
not get eight or more transfers ahead of the receive transfers. If the transmit
transfers do get ahead of the receive transfers, transmit element transfers will
be stopped, possibly causing missing of synchronization events. For cases
where receive or transmit element transfers are within seven or less transfers
of the other, the DMA channel maintains this information as internal status.
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4.9 Resource Arbitration and Priority Configuration

Priority decides which of competing requesters have control of a resource with
multiple requests. The requesters include:

� The DMA channels
� The CPU’s program and data accesses.

The resources include:

� Internal data memory including each interleave of internal data memory.

� The internal peripheral registers which are accessed through the peripheral
bus.

� Internal program memory.

� The external memory interface (EMIF).

Two aspects of priority are programmable:

DMA versus CPU priority:  Each DMA channel may independently be configured
in high priority mode by setting the PRI bit in the associated DMA channel control
register. The AUXPRI field in the DMA auxiliary control register allows the same
feature for the auxiliary channel. When in high priority mode, the associated
channel’s requests are sent to the appropriate resource with a signal indicating the
high priority status. By default all these fields are 0, disabling the high priority mode.
Each resource can use this signal in its own priority scheme for resolving conflicts.
Refer to the documentation for the particular resource for how it utilizes this signal.

Priority between DMA channels:  The DMA has a fixed priority scheme with
channel 0 having highest priority and channel 3 having lowest priority. The auxiliary
channel may be given a priority anywhere within this hierarchy.

4.9.1 DMA Global Control Register and Priority Between Channels

The fields in the DMA auxiliary control registers affect all the auxiliary channels
(Figure 4–12 and Table 4–8). The fields in this register will be described in the
following subsections.

Figure 4–12. DMA Channel Global Control Register

31                                                                                                                         5 4 3                                           0

Reserved AUXPRI CH PRI

R, +0 RW, +0 RW, +0
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Table 4–8. DMA Auxiliary Control Register

Bitfield Description

CH PRI DMA channel priority

CH PRI = 0000b, fixed channel priority mode auxiliary channel 1st highest priority
CH PRI = 0001b, fixed channel priority mode auxiliary channel 2nd highest priority
CH PRI = 0010b, fixed channel priority mode auxiliary channel 3rd highest priority
CH PRI = 0011b, fixed channel priority mode auxiliary channel 4th highest priority
CH PRI = 0100b, fixed channel priority mode auxiliary channel 5th highest priority
CH PRI = other, reserved

AUXPRI Auxiliary channel priority mode

AUXPRI = 0, CPU priority
AUXPRI = 1, DMA priority

The priority between DMA channels determines which DMA channel will perform
a read or write transfer first, given that two or more channels are ready to perform
transfers.

The priority of the auxiliary channel is configurable by programming the CH PRI
field in the DMA global control register. By default, CH PRI contains the value
0000b at reset. This value sets the auxiliary channel as highest priority, followed
by channel 0, followed by channel 1, followed by channel 2, with channel 3 having
lowest priority.

Arbitration between channels occurs independently for read and write transfers
every CPU clock cycle. Any channel that is in the process of waiting for synchro-
nization of any kind may lose control of the DMA to a lower priority channel.
Once that synchronization is received, that channel may regain control of the
DMA from a lower priority channel. This rule is applied independently to the
transmit and receive portions of a split mode transfer. The transmit portion has
higher priority than the receive portion.

If multiple DMA channels and the CPU are contending for the same resource,
the channeler CPU with the highest priority occurs first. Then, arbitration
between the highest priority DMA channel and the CPU occurs. Normally, if a
channel is lower priority than the CPU, all lower priority channels should also
be lower priority than the CPU. Similarly, if a channel has a higher priority than
the CPU, all higher priority channels should also be higher priority than the
CPU. This contention of the DMA versus CPU arbitration is decided by each
resource. Refer to a specific resource’s documentation for a full explanation.
Note that a channel’s PRI field should only be modified when that channel is
paused or stopped.
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4.9.2 Switching Channels

A higher priority channel will gain control of the DMA from a lower priority channel
once it has received the necessary read synchronization. In switching channels,
the current channel allows all data from requested reads to complete. The DMA
determines which higher priority channel will gain control of the DMA controller
read operation. That channel then starts its read operation. Simultaneously, write
transfers are allowed to complete from the previous channel.
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4.10 DMA Channel Condition Determination

Several condition statuses are available to inform the user of significant events
or potential problems in DMA channel operation. These statuses reside in the
DMA channel secondary control register COND bit fields.

This register also provides the means to enable such events to trigger the DMA
to CPU interrupt for a channel through its corresponding interrupt enable (IE)
bitfields. If a COND bit and its corresponding IE bit are set, that condition is
enabled to contribute to the status of the interrupt signal the from the associat-
ed DMA channel to the CPU. If the TCINT bit in the DMA channel x control reg-
ister is set, the logical OR of all enabled conditions forms the DMA_INTx sig-
nal. Otherwise, the DMA_INTx remains inactive. This logic is shown in
Figure 4–13. If selected by the interrupt selector, a low to high on that
DMA_INT will cause an interrupt condition to be latched by the CPU.

The SX COND, WDROP, and RDROP bits in the DMA channel secondary control
register are treated as warning conditions. If these conditions are enabled and
active, then they move the DMA channel from the running to the pause state,
regardless of the value of the TCINT bit.

If a COND bit’s associated IE bit is set, that COND bit may only be cleared by
a user write of 0. Otherwise, that COND bit may be automatically cleared. A
user write of 1 to a COND bit has no effect. Thus, you cannot manually force
one of the conditions.

Most values in this register are cleared at reset. The one exception is the interrupt
enable for the block transfer complete event (BLOCK IE), which is set at reset.
Thus, by default, the block transfer complete condition is the only condition that
could contribute to the CPU interrupt. Other conditions can be enabled by setting
the associated IE bit.

Figure 4–13. Generation of DMA Interrupt for Channel x From Conditions
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4.10.1 Definition of Channel Conditions

Table 4–9 describes each of the conditions in the DMA channel secondary
control register.

Depending on the system application, these conditions may represent errors.
The last frame condition can be used to change the reload register values for
autoinitialization. The frame index and element count reload are used every
frame. Thus, you must wait until all but the last frame transfer in a block transfer
completes to change these values. Otherwise, the current block transfer will
be affected.
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Table 4–9. DMA Channel Condition Descriptions

COND Cleared By

Bitfield Event Occurs if … If IE Enabled Otherwise

SX Split transmit overrun 
receive

The split operation is enabled
and transmit element transfers
get seven or more element
transfers a ahead of receive
element transfers.

A user write of 0 to COND

FRAME Frame complete After the last write transfer in
each frame is written to
memory.

A user write of 0
to COND.

Two CPU clocks
later.

LAST Last frame After all counter adjustments
for the next to last frame in a
block transfer complete.

A user write of 0
to COND.

Two CPU clocks
later.

WDROP

RDROP

Dropped read/write 
synchronization

A subsequent synchronization
event occurs before the last
one is cleared.

A user write of 0 to COND.

BLOCK Block transfer 
complete

After the last write transfer in
a block transfer is written to
memory.

A user write of 0
to COND.

Two CPU clocks
later.
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4.11 Structure

Figure 4–14 shows the internal data movement paths of the DMA controller
including data buses and internal holding registers.

Figure 4–14. DMA Controller Data Bus Block Diagram
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4.11.1 Read and Write Buses

Each DMA channel can independently select one of four sources and destinations:

1) EMIF
2) Internal program memory
3) Internal data memory
4) Internal peripheral bus

Thus, read and write buses from each source interface to the DMA controller.

The auxiliary channel also has read and write buses. However, since the auxiliary
channel provides address generation for the DMA, the naming convention of its
buses differ. For example, data writes from the auxiliary channel through the
DMA are performed through the auxiliary write bus. Similarly, data reads from
the auxiliary channel through the DMA are performed through the auxiliary read
bus.
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4.11.2 DMA FIFO

A 9-deep DMA FIFO holding path is provided to facilitate bursting to high perfor-
mance memories such as internal program and data memory as well as external
synchronous DRAM (SDRAM) or synchronous burst SRAM (SBSRAM). When
combined with a channel’s holding registers this path effectively becomes an
11-deep FIFO. Only one channel control the FIFO at any given time. For a chan-
nel to gain control of the FIFO, the following conditions must all apply:

� The channel does not have read or write synchronization enabled. Since
split mode requires read and write synchronization, the FIFO is not used
by a channel in split mode. If only frame synchronization is enabled, then
the FIFO may still be used by that channel.

� The channel is running.

� The FIFO is void of data from any other channel.

� The channel is the highest priority channel of those that meet the above
three conditions.

The third restriction minimizes “head-of-line” blocking. Head-of-line blocking
occurs when a DMA request of higher priority waits for a series of lower priority
requests to come in before issuing its first request. If a higher priority channel
requests control of the DMA controller from a lower priority channel, only the
last request of the previous channel has to complete. After that, the higher
priority channel completes its requests through its holding registers. The
holding registers do not allow as high of a throughput through the DMA controller.
In the gaps, the lower priority channel begins no more read transfers but is
allowed to flush the FIFO by completing its write transfers. As the higher priority
channel is not yet in control of the FIFO, there will be gaps in its access where
the lower priority channel may drain its transfer from the FIFO. Once the FIFO
is clear, if the higher priority channel has not stopped, it gains control of the FIFO.

The DMA FIFO has two purposes:

� Increasing performance
� Decreasing arbitration latency

For increased performance  The FIFO allows read transfers to get ahead of
write transfers. This feature minimizes penalties for variations in available transfer
bandwidth at either end of the element transfer. Thus, the DMA can capitalize on
separate windows of opportunity at the read and write portion of an element trans-
fer. If the requesting DMA channel is using the FIFO, the resources are capable
of sustaining read or write accesses at the CPU clock cycle rate. However, there
may be some latency in performing the first access. The handshaking between
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a resource and the DMA controller controls the rate of consecutive requests and
the latency of received read transfer data.

Decreased arbitration latency versus the CPU:  The other function of the
DMA FIFO is capturing read data from any pending requests for a particular
resource. For example, consider the situation where the DMA is reading data
from pipelined external memory such as SDRAM or SBSRAM into internal
data memory. Assume the CPU is given higher priority over the DMA channel
making requests, and that it makes a competing program fetch request to the
EMIF. Assume that simultaneously, the CPU is accessing all banks of internal
memory, blocking out the DMA. In this case, the FIFO allows the pending DMA
accesses to complete and the program fetch to proceed. Due to the pipelined
request structure of the DMA, at any one point in time the DMA may have pending
read transfer requests whose data has not yet arrived. Once enough requests are
outstanding, the DMA stops making further read transfer requests.

4.11.3 Internal Holding Registers

Each channel has dedicated internal holding registers. If a DMA channel is
transferring data through its holding registers rather than the internal FIFO,
read transfers are issued consecutively. Once a read transfer request has
been initiated, no subsequent read transfers are started until the read data has
arrived within the holding register. Depending on whether the DMA controller
is in split mode or not, additional restrictions can apply:

Split mode:  The two registers serve as separate transmit and receive data
stream holding registers for split mode. For both the transmit and receive read
transfer, no subsequent read transfer request is issued until the associated
write transfer request completes.

Non-split mode:  Once the data arrives a subsequent read transfer may be
issued when not in split mode without waiting for the associated write transfer
to complete. However, because there are two holding registers, read transfers
may only get one transfer ahead of write transfers.
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4.11.4 Performance

The DMA can perform element transfers with single cycle throughput, if it
accesses separate resources for the read transfer and write transfer, and both
these resources have single-cycle throughput. An example of this is an
un-synchronized block transfer from single-cycle external SBSRAM to internal
data memory without any competition from any other channels or the CPU.
The DMA performance can be limited by:

� The throughput and latency of the resources it requests.
� Waiting for read, write, or frame synchronization.
� Interruptions by higher priority channels.
� Contention with the CPU for resources.



DMA Action Complete Pins

4-37Direct Memory Access (DMA) Controller

4.12 DMA Action Complete Pins

The DMA action complete pins provide a method of feedback to external logic
by generating an event for each channel (DMAC0–DMAC3). If specified by the
DMAC EN bitfield in the DMA channel secondary control register, this pin can
reflect the status of RSYNC STAT, WSYNC STAT, BLOCK COND, or FRAME
COND, or be treated as a high or low general purpose output. If the DMAC bit
reflects RSYNC STAT or WSYNC STAT, externally, then, once a synchroniza-
tion event has been recognized, DMAC will transition from low to high. Once that
same event has been serviced as indicated by the status bit being cleared,
DMAC will transition from high to low. Before being sent off chip, the DMAC sig-
nals are synchronized by CLKOUT2 (1/2 the CPU clock rate). The active period
of these signals is guaranteed to be a minimum of 2 CLKOUT2 periods wide.
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4.13 Emulation

When using the emulator for debugging, the CPU may be halted on an execute
packet boundary for single stepping, benchmarking, profiling, or other debugging
purposes. The user may configure whether the DMA pauses during this time or
continues running. This configuration is accompanied by setting the EMOD bit in
the DMA primary control register to 0 or 1. If paused, the STATUS field will reflect
the paused state of the channel. The auxiliary channel continues running during
an emulation halt.
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5.1 Overview

The host-port interface (HPI) is a 16-bit wide parallel port through which a host
processor can directly access the CPU’s memory space. The host device func-
tions as a master to the interface, which increases its ease of access. The host
and CPU can exchange information via internal or external memory. The host
also has direct access to memory mapped peripherals. Connectivity to the
CPU’s memory space is provided through the DMA controller. Dedicated
address and data registers not accessible to the CPU connect the HPI to the
DMA auxiliary channel which connects the HPI to the CPU’s memory space.
The HPI and CPU can access the HPI control register (HPIC). The host can
access the host address register (HPIA) and host data register (HPID) as well
as the HPIC using the external data and interface control signals (Figure 5–1).

Figure 5–1. TMS320C6x Block Diagram
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Figure 5–2. HPI Block Diagram
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Figure 5–2 shows a simplified diagram of host interface to the HPI.

The HPI provides 32-bit data to the CPU with an economical 16-bit external
interface by automatically combining successive 16-bit transfers. When the
host device transfers data through HPID, the DMA auxiliary channel accesses
the CPU’s address space. The HPI supports high speed consecutive host
accesses. In the absence of contention for memory mapped-resources, the
HPI can transfer one 16-bit value every 4 CPU clocks. Thus, the DMA auxiliary
channel can perform one 32-bit access every 8 CPU clocks.

The external HPI interface consists of the HPI data bus and control signals that
configure and control the interface. The interface can connect to a variety of
host devices with little or no additional logic.

The 16-bit data bus (HD0–HD15) exchanges information with the host. Because
of the 32-bit word structure of the chip architecture, all transfers with a host consist
of two consecutive 16-bit halfwords. On host data (HPID) write accesses, the
HBE[1:0] byte enables select which bytes in a 32-bit word should be written.
HPIA, HPIC, and HPID read accesses are performed as 32-bit accesses, and the
byte enables are not used. The dedicated HHWIL pin indicates whether the first
or second halfword is being transferred. An internal control register bit determines
whether the first or second halfword is placed into the most significant halfword
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of a word. The host must not break the first halfword/second halfword (HHWIL
low/high) sequence of an ongoing HPI access.

The two data strobes (HDS1 and HDS2), the read/write select (HR/W), and the
address strobe (HAS) enable the HPI to interface to a variety of industry-standard
host devices with little or no additional logic. The HPI can easily interface to hosts
with a multiplexed or dedicated address/data bus, data strobe and a read/write
strobe, or two separate strobes for read and write.

The HCNTL[1:0] control inputs indicate which HPI register is accessed. Using
these inputs, the host can specify an access to the HPIA (which serves as the
pointer into the source or destination space), HPIC, or HPID. These inputs,
along with HHWIL, are commonly driven directly by host address bus bits or
a function of these bits. the host can interrupt the CPU by writing to the HPIC;
the CPU can activate HINT interrupt output to the host.

The host can access HPID with an optional automatic address increment of
HPIA. This feature facilitates reading and writing to sequential word locations. In
addition, auto-increment HPID reads prefetch the data at the auto-incremented
access to reduce latency on the subsequent host read request.

The HPI ready pin (HRDY) allows insertion of host wait-states. Wait-states may
be necessary depending on latency to the point in the memory map accessed
via the HPI as well as on the rate of host access. The rate of host access may
force not-ready conditions if the host attempts to access the host port before any
previous HPID write access or prefetched HPID read access completes. In this
case, the HPI simply holds off the host via HRDY. HRDY provides a convenient
way to automatically (no software handshake needed) adjust the host access
rate to the rate of data delivery from the DMA auxiliary channel. In the cases of
hardware systems that cannot take advantage of the HRDY pin, a HRDY bit in
the HPIC is available for use as a software handshake.
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5.2 HPI Signal Description

The external HPI interface signals implement a flexible interface to a variety
of host devices. Table 5–1 lists the HPI pins and their functions. The remainder
of this section discusses the pins in detail.

Table 5–1. HPI External Interface Signals

Signal
Name

Signal Type
(Input/Output/

HI-Z)
Signal
Count Host Connection Signal Function

HD[15:0] I/O/Z 16 Data bus

HCNTL[1:0] I 2 Address or control lines Controls HPI access type.

HHWIL I 1 Address or control lines Halfword identification input.

HAS I 1 Address latch enable (ALE)
or address strobe or unused
(tied high)

Differentiates address versus data
values on multiplexed address/data
host.

HBE[1:0] I 2 Byte enables Data write byte enables

HR/W I 1 Read/write strobe, address
line, or multiplexed address/
data

Read/Write select

HCS I 1 Address or control lines Data strobe inputs.

HDS1

HDS2

I 2 Read strobe and write 
strobe or data strobe

Data strobe inputs.

HRDY O 1 Asynchronous ready Ready status of current HPI access

HINT O 1 Host interrupt input. Interrupt signal to host

5.2.1 Data Bus: HD[15:0]

HD[15:0] is a parallel, bidirectional, 3-state data bus. HD is placed in high-
impedance when not performing an HPI read access.

5.2.2 Access Control Select: HCNTL[1:0]

HCNTL[1:0] indicate which internal HPI register is being accessed. The states
of these two pins select access to the HPI address (HPIA), HPI data (HPID), or
HPI control (HPIC) registers. Additionally, the HPID register can be accessed
with an optional automatic address increment. Table 5–2 describes the
HCNTL0/1 bit functions.



HPI Signal Description

 5-6

Table 5–2. HPI Input Control Signals Function Selection Descriptions

HCNTL1 HCNTL0 Description

0 0 Host can read or write the HPI control register, HPIC.

0 1 Host can read or write HPID. HPIA is postincremented by a
word address (4 byte addresses).

1 0 Host can read or write the address register, HPIA.

1 1 Host can read or write HPID. HPIA is not affected.

5.2.3 Halfword Identification Select: HHWIL

Identifies the first or second halfword of transfer but not the most significant
or least significant halfword. The HWOB bit specifies the halfword in the HPIC
register, described later in this chapter. HHWIL is low for the first halfword and
high for the second halfword.

5.2.4 Byte Enables: HBE [1:0]

On HPID writes, the value of HBE[1:0] indicates which portions of the 32-bit
word must be written. The value of HBE[1:0] is not important on HPIA or HPIC
accesses or on HPID reads. On HPID writes, HBE0 enables the least significant
byte in the halfword and HBE1 enables the MSByte in the halfword. Table 5–3
lists the valid combinations of byte enables. For byte writes, only one HBE in
either of the halfword accesses may be enabled active-low. For halfword data
writes, both the HBEs must be held active-low in either (but not both) halfword
accesses. For word accesses, both HBE must be held active-low in both half-
word accesses. No other combinations are valid. The selection of byte-enables
and the endianness of the CPU (selected via the LENDIAN pin), determine the
logical address implied by the access.
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Table 5–3. Byte Enables for HPI Data Write Access

HBE-1:0
Effective Logical Address

LSBs (binary)

Data Write
Type

Second Write
HHWIL = 1

First Write
HHWIL = 0 Little Endian Big Endian

Byte 11 10 00 11

Byte 11 01 01 10

Byte 10 11 10 01

Byte 01 11 11 00

halfword 11 00 00 10

halfword 00 11 10 00

Word 00 00 00 00

5.2.5 Read/Write Select: HR/W

HR/W is the host read/write select input. Hosts must drive HR/W high to read
and low to write HPI. Hosts without either a read/write select output or a read
or write strobe can use an address line for this function.

5.2.6 Ready: HRDY

When active-low, HRDY indicates that the HPI is ready for a transfer to be
performed. When inactive-high, HRDY indicates that the HPI is busy complet-
ing the internal portion of a current read access of a previous HPID read pre-
fetch or write access. HCS enables HRDY; HRDY is always high when HCS
is high.

5.2.7 Strobes: HCS , HDS1, HDS2

HCS, HDS1, and HDS2 allow connection to hosts with either:

� Single strobe output with read/write select.

� Separate read and write strobe outputs. In this case, read or write select
can be done by using different addresses.
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 Figure 5–3 shows the equivalent circuit of the HCS, HDS1, and HDS2 inputs.

Used together, HCS, HDS1, and HDS2 generate an active-low internal
HSTRB signal. Note that HSTRB is only active low when both HCS is active-
low and either (but not both) HDS1 and HDS2 are active low. The falling edge
of HSTRB (when HAS is tied inactive-high) samples HCNTL[1:0], HHWIL,
HR/W, and HBE[1:0]. Therefore, whichever of HDS1 , HDS2, or HCS that falls
the latest controls the sampling time. HCS serves as the enable input for the
HPI and must be low during an access. However, as the HSTRB signal deter-
mines the actual boundaries between accesses, HCS may stay low between
successive accesses as long as both HDS1 and HDS2 go inactive-high or go
active-low.

Hosts with separate read and write strobes connect these strobes to either
HDS1 or HDS2. Hosts with a single data strobe connect it to either HDS1 or
HDS2, connecting to the unused pin high. Regardless of HDS connections, the
HR/W is still required to determine direction of transfer. Because HDS1 and
HDS2 are internally exclusive-NORed, hosts with a high true data strobe can
connect this to one of the HDS inputs with the other HDS input connected low.

HSTRB is used for three purposes:

1) On a read, the falling edge of HSTRB initiates HPI read accesses for all
access types.

2) On a write, its rising edge initiates HPI write accesses for all access types.

3) Falling edges latch HPI control inputs including: HHWIL, HR/W, HBE[1:0],
HCNTL[1:0]. HAS also effects latching of control inputs. See subsection
5.2.8 for a description of HAS.

Additionally, HCS gates the HRDY output. In other words, a not-ready condi-
tion is indicated by the HRDY pin driven low only if HCS is active-low. Other-
wise HRDY is inactive(high).

Figure 5–3. Select Input Logic

HSTRB (internal signal)HDS2

HDS1 ÁÁÁ
ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ

5.2.8 Address Strobe Input: HAS

HAS allows HCNTL[1:0], HBE[1:0], HR/W, and HHWIL to be removed earlier
in an access cycle, which allows more time to switch bus states from address
to data information. This feature facilitates interface to multiplexed address
and data type buses. In this type of system, an ALE signal is often provided
and would normally be the signal connected to HAS.
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Hosts with a multiplexed address and data bus connect HAS to their ALE pin
or an equivalent pin. HHWIL, HCNTL0/1, HBE,and HR/W are latched on
HAS’s falling edge. When used, HAS must precede the latest of HCS, HDS1,
or HDS2. Hosts with separate address and data bus can tie HAS high. In this
case, HHWIL, HCNTL0/1, and HR/W are latched by the later of HDS1, HDS2,
or HCS falling edge while HAS stays inactive (high).

5.2.9 Interrupt to Host: HINT

HINT is the host interrupt output which is controlled by the HINT bit in the HPIC.
This bit is driven inactive-high when the chip is being reset. This signal is de-
scribed in more detail in subsection 5.3.5.

5.2.10 HPI Bus Access

Figure 5–5 and Figure 5–4 show HPI access timing for the cases when HAS is
and is not used, respectively. HSTRB represents the internally generated strobe
described in Figure 5–3. HAD represents control signals typically driven by host
address lines: HCNTL1:0, HR/W, HHWIL, and HBE[1:0]. HCNTL[1:0] and
HR/W should have the same values for both halfword accesses. HHWIL is
shown separately to indicate that it must be low for the first halfword transfer and
high for the second. If HAS is not used (tied high as shown in Figure 5–4), the
falling edge of HSTRB latches these signals. If HAS is used as shown in
Figure 5–5, the falling edge of HAS latches these values. In this case, the falling
edge of HAS must precede the falling edge of HSTRB. On a read, data is valid
a delay after the falling edge of HSTRB. If valid data is not already present in
the HPID, the data is setup at the rising edge of HRDY and held until the rising
edge of HSTRB. On a write, the host must setup data to the rising edge of
HSTRB.
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Figure 5–4. HPI Timing Diagram Using HAS
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Figure 5–5. HPI Timing Diagram Not Using HAS
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5.3 HPI Registers

Table 5–4 summarizes the three registers that the HPI utilizes for communication
between the host device and the CPU. HPID contains the data that was read from
the HPI memory if the current access is a read, or the data that will be written to
HPI memory if the current access is a write. HPIA contains the address in the HPI
memory at which the current access occurs. As this address is a 30-bit word
address, the bottom two bits are unaffected by HPIA writes and are always read
as 0.

Table 5–4. HPI Register Description

Register
Acronym

Register
Name

Host
Read/Write

CPU
Read/Write

CPU Read/Write
(Hex Byte Address)

HPID HPI data RW – –

HPIA HPI address RW – –

HPIC HPI control RW RW 0188 0000h

5.3.1 HPI Control Register (HPIC)

The HPIC diagrammed in Figure 5–6 is normally the first register accessed when
setting configuration bits and initialize the interface. Thus, the HPIC is organized
on the as a 32-bit register with the same high and low halfword contents. On a
host write, both halfwords must be identical. Note that the low halfword and the
high halfword are actually the same storage locations. No storage is allocated for
the read only reserved values. Only CPU writes to the lower halfword affect HPIC
values and HPI operation. The HPIC is normally the first register accessed to set
configuration bits and initialize the interface. Thus, the HPIC is organized as a
32-bit register with the same high and low halfword contents.

Figure 5–6. HPIC Register Diagram

31         21 20 19 18 17 16 15           5 4 3 2 1 0

Reserved FETCH HRDY HINT DSPINT HWOB Reserved FETCH HRDY HINT DSPINT HWOB

HR
CR
+0

HRW
CR
+0

HR
CR
+1

HRW
CR
+0

HRW
CR
+0

HWR
CR
+0

HR
CR
+0

HRW
CR
+0

HR
CR
+1

HRW
CRW

+0

HRW
CRW

+0

HRW
CR
+0

Note: CR = CPU Read, CRW = CPU Read/Write, HR = Host Read, HRW = Host Read/Write
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Table 5–5. HPI Control Register (HPIC) Bit Descriptions

Bit Description Subsection

HWOB Halfword ordering bit

If HWOB = 1, first halfword is least significant. If HWOB = 0, first halfword is most
significant. HWOB affects both data and address transfers. Only the host can
modify this bit. HWOB must be initialized before the first data or address register
access.

5.4

DSPINT The host processor-to-CPU/DMA interrupt. 5.3.4

HINT DSP to Host Interrupt. Determines the state of the CPU HINT output. 5.3.5

HRDY Ready signal to host. Not masked by HCS like HRDY pin.

If HRDY = 0 this indicates that the internal bus is waiting for a HPI data access
request to complete.

5.3.2

FETCH Host Fetch request.

If the host writes a one to this bit, it requests a fetch into HPID the word at the
address pointed to by HPIA.

Always read as 0.

5.3.2

5.3.2 Software Handshaking Using HRDY and FETCH

As described previously, the HRDY pin can indicate to a host that a HPID access
has not completed. For example, the current HPID access can be waiting for
a previous HPID access write to complete or for a previous HPID prefetched
read to complete. Also, the current HPID read access can be waiting for its
requested data to arrive. However, the HRDY and FETCH bits in the HPIC allow
for a software handshake that allows an HPI connection in systems where a
hardware ready control is not desired. The FETCH and HRDY bits can be used
to perform a read transfer as follows:

1) The host polls for the HRDY bit to be set.

2) The host writes the desired HPIA value. This step is skipped if HPIA is
already set to the desired value.

3) The host writes a 1 to the FETCH bit.

4) The host polls for the HRDY bit to be set.

5) The host performs a HPID read operation. In this case, the HPI is already
in the ready state (HRDY bit = 1).

6) If this was a read with post increment, go to 4.

For a read from the same location, go to 3.

For a read to a different address, go to 2.
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The HRDY bit alone can be used for write operations as follows:

1) The host polls for the HRDY bit to be set.

2) The host writes the desired HPIA value. (This step is skipped if HPIA is
already set to the desired value.)

3) The host performs a HPID write operation.

For another write operation, go to 1.

5.3.3 DSPINT and HINT Function Operation

The host and the CPU can interrupt each other using bits in the HPIC register.
This subsection presents more information about this process.

5.3.4 Host Device Using DSPINT to Interrupt the CPU

The host can interrupt the CPU by writing to the DSPINT bit in the HPIC. The
DSPINT bit is tied directly to the internal DSPINT signal. By writing
DSPINT = 1 when DSPINT = 0, the host causes a 0-to-1 transition on the
DSPINT signal. If appropriately selected by the interrupt selector, this transi-
tion will be detected as an interrupt condition by the CPU. The CPU can clear
the DSPINT bit by writing a 1 to DSPINT. Neither a host nor a CPU HPIC write
with DSPINT = 0 affects the DSPINT bit or signal.

5.3.5 CPU Using HINT  to Interrupt the Host

The CPU can send an active low interrupt condition on the HINT signal by writing
to the HINT bit in the HPIC. The HINT bit is inverted and tied directly to the HINT
pin. The CPU can set HINT active low by writing HINT = 1. The host can clear
the HINT to inactive-high bit by writing DSPINT = 1. Neither a host nor a CPU
HPIC write with HINT = 0 effects either the HINT bit or HINT signal. Note that
this bit is read twice on the host interface side, the first and second halfword
reads by the host may yield different data if the CPU changes the state of one
or both of these bits between the two read operations.
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5.4 Host Access Sequences

The host begins HPI accesses by initializing the HPIC, then HPIA, and then
writing data to or reading data from HPID. Reading or writing HPID initiates an
internal cycle that transfers the desired data between the HPID and the DMA
auxiliary channel. Host access of any HPI register requires two halfword
accesses on the HPI bus: the first with HHWIL low, and the second with HHWIL
high. Typically, the host does not break the first halfword/second halfword
(HHWIL low/high) sequence. If this sequence is broken improperly, data may
be lost, and undesired operation may result. The first halfword access may
have to wait for a previous HPI request to complete. Previous requests include
HPID writes and pre-fetched HPID reads. Thus, the HPI will deassert HRDY
high until the HPI can begin this request. The second halfword access will
always have HRDY active low since all previous accesses have been
completed for the first halfword access.

5.4.1 Host Initialization of HPIC and HPIA

Before accessing data, the host must first initialize the HWOB bit of the HPIC
and then HPIA (in this order, because HWOB affects the HPIA access). After
initializing HWOB, the host can then write to HPIA with the correct halfword
alignment. Table 5–6 and Table 5–7 illustrate the initialization sequence for
HWOB = 1 and HWOB = 0, respectively. In these examples, HPIA is set to
80001234h. Note that in all these accesses, HRDY bit in the HPIC is set (bit 19
and 3).

Table 5–6. Initialization of HWOB = 1 and HPIA

Event Value During Access Value After Access

HD HBE[1:0] HR/W HCNTL[1:0] HHWIL HPIC HPIA HPID

Host writes HPIC
1st halfword

0001 xx 0 00 0 00090009 ???????? ????????

Host writes HPIC
2nd halfword

0001 xx 0 00 1 00090009 ???????? ????????

Host writes HPIA
1st halfword

1234 xx 0 01 0 00090009 ????1234 ????????

Host writes HPIA
2nd halfword

8000 xx 0 01 1 00090009 80001234 ????????
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Table 5–7. Initialization of HWOB = 0 and HPIA

Event Value During Access Value After Access

HD HBE[1:0] HR/W HCNTL[1:0] HHWIL HPIC HPIA HPID

Host writes HPIC
1st halfword

0000 xx 0 00 0 00080008 ???????? ????????

Host writes HPIC
2nd halfword

0000 xx 0 00 1 00080008 ???????? ????????

Host writes HPIA
1st halfword

8000 xx 0 01 0 00080008 8000???? ????????

Host writes HPIA
2nd halfword

1234 xx 0 01 1 00080008 80001234 ????????

5.4.2 HPID Read Access Without Auto-Increment

Assume that once the HPI is initialized that the host wishes to do a read access
to that address without an autoincrement. Assume that the host wants to read
the word at address 80001234h and that the word value at that location is
789ABCDEh. Table 5–8 and Table 5–9 illustrate this access for HWOB = 1 and
HWOB = 0, respectively. On the first halfword accesses, the HPI waits for any
previous requests to complete. During this time, HRDY is held inactive-high.
Then, the HPI sends the read request to the DMA auxiliary channel. If no pre-
vious requests are pending, this event occurs with the falling edge of HSTRB.
HRDY remains low until the DMA auxiliary channel loads the requested data
into HPID. Because all DMA auxiliary channel reads are word reads, at the
beginning of the second read access the data is already present in HPID.
Thus, the second halfword HPID read will never encounter a not ready condi-
tion and HRDY will remain active-low. The byte enables are not important as
the HPI only does word reads.
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Table 5–8. Read Access to HPI Without Autoincrement: HWOB = 1

Event Value During Access Value After Access

HD HBE[1:0] HR/W HCNTL[1:0] HRDY HHWIL HPIC HPIA HPID

Host reads
1st halfword

Data not
Ready

???? xx 1 11 1 0 00010001 80001234 ????????

Host reads
2nd half-
word

Data ready

BCDE xx 1 11 0 0 00090009 80001234 789ABCDE

Host reads
2nd half-
word

789A xx 1 11 0 1 00090009 80001234 789ABCDE

Table 5–9. Read Access to HPI Without Autoincrement: HWOB = 0

Value During Access Value After Access

Event HD HBE[1:0] HR/W HCNTL[1:0] HRDY HHWIL HPIC HPIA HPID

Host reads
1st halfword

Data not
Ready

???? xx 1 11 1 0 00000000 80001234 ????????

Host reads
2nd half-
word

Data Ready

798A xx 1 11 0 0 00080008 80001234 789ABCDE

Host Reads
2nd half-
word

BCDE xx 1 11 0 1 00080008 80001234 789ABCDE
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5.4.3 HPID Read Access With Auto-Increment

The autoincrement feature results in efficient sequential host accesses. For
both HPID read and write accesses, this removes the need for the host to load
incremented address into HPIA. For read accesses, the data pointed to by the
next address is fetched immediately after the completion of the current read.
Because the intervals between successive reads is used to prefetch data, the
latency for the next access is reduced. Prefetching can also occur after a host
write of FETCH = 1 to the HPIC. If the next HPI access is a HPID read, then
the data is not re-fetched and the pre-fetched data is sent to the host. Other-
wise, the HPI must still wait for the prefetch to complete.

Table 5–10 shows a read access with auto-increment.

After the first halfword access is complete (with the rising edge of the first
HSTRB), the address increments to the next word or 80001238h. Assume that
the data at that location is 87654321h. This data is pre-fetched and loaded into
HPID. Prefetching begins on the rising edge of HSTRB on the second halfword
read.

Table 5–10. Read Access to HPI With Autoincrement: HWOB = 1

Event Value During Access Value After Access

HD HBE[1:0] HR/W HCNTL[1:0] HRDY HHWIL HPIC HPIA HPID

Host Reads 
1st halfword

Data Not
Ready

???? xx 1 10 1 0 00010001 80001234 ????????

Host Reads
2nd halfword

Data Ready

BCDE xx 1 10 0 0 00090009 80001234 789ABCDE

Host Reads
2nd halfword

789A xx 1 10 0 1 00090009 80001238 789ABCDE

Pre-fetch

Data Not 
Read

???? xx x xx 0 x 00010001 80001238 789ABCDE

Pre-fetch

Data Ready

???? xx x xx 0 x 00090009 80001238 87654321
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Table 5–11. Read Access to HPI With Autoincrement: HWOB = 0

Event Value During Access Value After Access

HD HBE[1:0] HR/W HCNTL[1:0] HRDY HHWIL HPIC HPIA HPID

Host Reads
1st halfword

Data Not
Ready

???? xx 1 10 1 0 00000000 80001234 ????????

Host Reads
2nd halfword

Data Ready

789A xx 1 10 0 0 00080008 80001234 789ABCDE

Host Reads
2nd halfword

BCDE xx 1 10 0 1 00080008 80001238 789ABCDE

Pre-fetch

Data Not
Read

???? xx x xx 0 x 00000000 80001238 789ABCDE

Pre-fetch

Data Ready

???? xx x xx 0 x 00080008 80001238 87654321

5.4.4 Host Data Write Access Without Auto Increment

During a write access to the HPI, the first halfword portion of HPID (LShalfword
or MShalfword as selected by HWOB) is overwritten by the data coming from
the host and the first HBE[1:0] latched while the HHWIL pin is low. The second
halfword portion of HPID is overwritten by the data coming from the host and the
second HBE[1:0] pair is latched while the HHWIL pin is high. At the end of this
write access (with the second rising edge HSTRB), HPID is transferred as a 32-bit
word to the address specified by HPIA with the four related byte-enables.

Table 5–12 and Table 5–13 illustrate an HPID write access with HWOB = 1 and
HWOB = 0, respectively. The host writes 5566h to the 16 LSBs of location
80001234h, which is already pointed to by HPIA. This location is assumed to
start with the value 0. The HPI holds off the host until any previous transfers are
completed by setting HRDY inactive-high. Also, once the first halfword becomes
ready, the second halfword does not encounter any not ready time. If there are
no pending writes waiting in HPID, then write accesses normally proceed with-
out a not ready time. Note that the HBE[1:0] is only enabled for the transfer
which transfers the 16 LSBs.
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Table 5–12. Write Access to HPI Without Autoincrement: HWOB = 1�

Value During Access Value After Access
Location

Event HD HBE[1:0] HR/W HCNTL[1:0] HRDY HHWIL HPIC HPIA HPID
Location
80001234

Host writes HPID
1st halfword

Waiting for Previous

5566 00 0 11 1 0 00010001 80001234 ????5566 00000000

Host writes HPID
1st halfword

Ready

5566 00 0 11 0 0 00090009 80001234 ????5566 00000000

Host writes HPIA
2nd halfword

wxyz 11 0 11 0 1 00090009 80001234 wxyz5566 00005566

� wxyz represents a don’t care value on the HD pins.

Table 5–13. Write Access to HPI Without Autoincrement: HWOB = 0

Value During Access Value After Access
Location

Event HD HBE[1:0] HR/W HCNTL[1:0] HRDY HHWIL HPIC HPIA HPID
Location
80001234

Host writes HPID
1st halfword

Waiting for Previous

wxyz 11 0 11 1 0 00000000 80001234 wxyz???? 00000000

Host writes HPID
1st halfword

Ready

wxyz 11 0 11 0 0 00080008 80001234 wxyz???? 00000000

Host writes HPIA
2nd halfword

5566 00 0 11 0 1 1 00080008 80001234 wxyz5566 00005566
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5.4.5 HPID Write Access with Auto-Increment

Table 5–14 and Table 5–15 show a host write data with auto-increment for
HWOB = 1 and HWOB = 0, respectively. These examples are identical to the
ones in subsection 5.4.4, with the exception of the HCNTL[1:0] value and a
subsequent write of 33 to the most significant byte of the word at address
80001238. The increment happens on the rising edge of HSTRB on the next
HPID write access. If the next access is an HPID or HPIC access, or a HPID
read, the autoincrement does not occur.

Table 5–14. Write Access to HPI With Autoincrement: HWOB = 1��

Event Value During Access Value After Access Location
80001234

Location
80001238

HD HBE
[1:0]

HR/W HCNTL
[1:0]

HRDY HHWIL HPIC HPIA HPID
80001234 80001238

Host writes HPID
1st halfword

Waiting for Previous

wxyz 11 0 11 1 0 00000000 80001234 wxyz???? 00000000 00000000

Host writes HPID
1st halfword

Waiting for Previous

5566 00 0 01 1 0 00010001 80001234 ????5566 00000000 00000000

Host writes HPID
1st halfword

Ready

5566 00 0 01 0 0 00090009 80001234 ????5566 00000000 00000000

Host writes HPIA
2nd halfword

wxyz 11 0 01 0 1 00090009 80001234 wxyz5566 00005566 00000000

Host writes HPID
1st halfword

Waiting for Previous

nopq 11 0 01 1 0 00010001 80001234 wxyznopq 00005566 00000000

Host writes HPID
1st halfword

Ready

nopq 11 0 01 0 1 00090009 80001238 wxyznopq 00005566 00000000

Host writes HPIA
2nd halfword

33rs 01 0 01 1 1 00090009 80001238 33rsnopq 00005566 33000000

�� wxyz, rs, and nopd represent don’t care values on HPID.
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Table 5–15. Write Access to HPI Without Autoincrement: HWOB = 0�

Value During Access Value After Access

Event HD
HBE
[1:0] HR/W

HCNTL
[1:0] HRDY HHWIL HPIC HPIA HPID

Location
80001234

Location
80001238

Host writes HPID
1st halfword

Waiting for Previous

5566 00 0 01 1 0 00000000 80001234 ????5566 00000000 00000000

Host writes HPID

1st halfword

Ready

5566 00 0 01 0 0 00080008 80001234 ????5566 00000000 00000000

Host writes HPID
2nd halfword

wxyz 11 0 01 0 1 00080008 80001234 wxyz5566 00005566 00000000

Host writes HPID
1st halfword

Waiting for Pre-
vious

33rs 11 0 01 1 0 00000000 80001234 33rs5566 00005566 00000000

Host writes HPID
1st halfword

Ready

33rs 11 0 01 0 1 00080008 80001238 33rs5566 00005566 00000000

Host writes HPID
2nd halfword

nopq 01 0 01 0 1 00080008 80001238 33rsnopq 00005566 33000000

�  wxyz, rs, and nopd represent don’t care values on HPID.

5.4.6 Single Half-word Cycles

In normal operation, every transfer must consist of two halfword accesses.
However, to speed operation the user may perform single halfword accesses.
These can be useful in several cases:

� HPIC: Note that in Table 5–6 that the entire HPIC was written correctly
after the first write. When writing the HPIC, the host does not have to be
concerned about HHWIL, nor does it have to perform two consecutive
writes to both halfwords. Similarly, the host can choose to only read the
HPIC once since both halves contain the same value.

� HPIA: Note that in Table 5–6, the portion of HPIA accesses as selected by
HHWIL and HWOB automatically is updated after each halfword access.
Thus, to change the only the upper or lower 16 bits of HPIA the host only
needs to select which half to modify through a combination of HHWIL and
HWOB. Similarly, the host can choose to only read the desired half of HPIA.
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� HPID read accesses: Read accesses are actually triggered by the first
halfword access (HHWIL low). Thus, if on reads the host is only interested
in the first halfword (least or most significant selected by HWOB), the host
does not need to request the second address. However, pre-fetching will
not occur unless the second halfword is also read. A subsequent read of
the first halfword (HHWIL low) or the write of a new value to HPIA will over-
ride any previous prefetch request. On the other hand, a read of just the
second halfword (HHWIL high) is not allowed and can result in undefined
operation.

� Write accesses: Write accesses are triggered by the second halfword access
(HHWIL is high). Thus, if the host only desires to change the portion of HPID
selected by HHWIL high (and the associated byte enables) during consecu-
tive write accesses, only a single cycle would need to be initiated. This tech-
nique primary use would be for memory fills. To do this the host would write
both halfwords of the first write access with HBE[1:0] = 00. On subsequent
write accesses, the host would make sure it writes the same value to the por-
tion of HPID selected by HHWIL as did the first write access. In this case, the
host would perform auto-incrementing writes (HCNTL[1:0] = 01) on all write
accesses.
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5.5 Access of HPI Memory During Reset

The HPI cannot be used while the chip is in reset. However, certain boot modes
may allow the host to write the CPU’s memory space (including configuring EMIF
configuration registers to define external memory before accessing it). Although
the device is not in reset, the CPU itself is in reset until the boot completes. See
Chapter 7, Boot Configuration, Reset, and Memory Map, for more details.
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External Memory Interface
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6.1 Overview

The external memory interface (EMIF) supports a glueless interface to a vari-
ety external devices, including:

� Synchronous burst SRAM (SBSRAM) running at 1� and 1/2� the CPU
clock rate

� Synchronous DRAM (SDRAM) running at 1/2� the CPU clock rate

� Asynchronous devices, including asynchronous SRAM, ROM, and FIFOs.
The EMIF provides highly programmable timing to these interfaces.

The EMIF services requests of the external bus from four requesters as shown
in Figure 6–1:

� The on-chip program memory controller that services CPU program fetches

� The on-chip data memory controller that services CPU data fetches

� The on-chip DMA controller

� An external shared-memory device

If multiple requests arrive simultaneously, the EMIF prioritizes them and performs
the necessary cycles. A block diagram of the EMIF is shown in Figure 6–2.

Table 6–1 describes the EMIF signals.
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Figure 6–1. External Memory Interface in the TMS320C6x Block Diagram
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Figure 6–2. EMIF Block Diagram
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Table 6–1. EMIF Signal Descriptions

Pin (I/O/Z) Description

CLKOUT1 O Clock output. The CPU clock rate

CLKOUT2 O Clock output. 1/2 the CPU clock rate

ED[31:0] I/O/Z Data I/O. 32-bit data input/output from external memories and peripherals

EA[21:2] O/Z External address output. Drives bits 21-2 of the byte address.

CE0 O/Z Active-low chip select for memory space CE0

CE1 O/Z Active low chip select for memory space CE1

CE2 O/Z Active low chip select for memory space CE2

CE3 O/Z Active low chip select for memory space CE3

BE(3:0) O/Z Byte enables. Active low byte enable. Individual bytes and halfwords can be selected
for both read and write cycles. Decoded from two LSBs of the byte address.

ARDY I Ready. Active-high asynchronous ready input used to insert wait states for slow
memories and peripherals

AOE O/Z Active-low output enable for asynchronous memory interface

AWE O/Z Active-low write strobe for asynchronous memory interface

ARE O/Z Active-low read strobe for asynchronous memory interface

SSADS O/Z Active-low address strobe/enable for SBSRAM interface

SSOE O/Z Output buffer enable for SBSRAM interface

SSWE O/Z Active-low write enable for SBSRAM interface

SSCLK O/Z SBSRAM interface clock. Equivalent to CLKOUT1 or CLKOUT2 as selected by
the user

SDRAS O/Z Active-low row strobe for SDRAM memory interface

SDCAS O/Z Active-low column strobe for SDRAM memory interface

SDWE O/Z Write enable. Active-low write enable for SDRAM memory interface

SDA10 O/Z SDRAM A10 address line. Address line/auto precharge disable for SDRAM
memory. Used to refresh SDRAM even while no SDRAM accesses are using the
bus.

SDCLK O/Z SDRAM interface clock. 1/2 the CPU clock rate. Equivalent to CLKOUT2.

HOLD I Active-low external bus hold (3-state) request

HOLDA O Active-low external bus hold acknowledge
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6.1.1 Resetting the EMIF

A hardware reset using the RESET pin on the device forces all register values
to their reset state. During reset, all outputs are driven to their inactive levels,
with the exception of the clock outputs (SDCLK, SSCLK, CLKOUT1, and
CLKOUT2).  CLKOUT2, SSCLK, and SDCLK are driven high or low during ac-
tive RESET. CLKOUT1 continues clocking unless the PLL configuration pins
are changed or if the SSCLK configuration is different from reset SSCLK con-

figuration.
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6.2 EMIF Registers

Control of the EMIF and the memory interfaces it supports is maintained through
memory-mapped registers within the EMIF. A write to any EMIF register is not
complete until all pending EMIF accesses that use that register are completed.

The memory-mapped registers are shown in Table 6–2.

Table 6–2. EMIF Memory-Mapped Registers

Byte
Address Name

0x01800000 EMIF global control

0x01800004 EMIF CE1 space control

0x01800008 EMIF CE0 space control

0x0180000C Reserved

0x01800010 EMIF CE2 space control

0x01800014 EMIF CE3 space control

0x01800018 EMIF SDRAM control

0x0180001C EMIF SDRAM refresh
period

6.2.1 EMIF Global Control Register

The EMIF global control register (shown in Figure 6–3 and described in Table 6–3)
configures parameters common to all the CE spaces.

Figure 6–3. EMIF Global Control Register Diagram
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Table 6–3. EMIF Global Control Register Field Description

Field Description

SDCINV SDCLK polarity

SDCINV = 0, SDCLK output is inverted from internal SDCLK
SDCINV = 1, SDCLK output is identical to internal SDCLK

CLK2INV CLKOUT2 polarity

CLK2INV = 0, CLKOUT2 output is inverted from internal CLKOUT2
CLK2INV = 1, CLKOUT2 output is identical to internal CLKOUT2

ARDY Value of ARDY input

HOLD Value of HOLD input

HOLDA Value of HOLDA output

NOHOLD External HOLD disable (1 = hold disabled; 0 = hold enabled)

SDCEN SDCLK enable

SDCEN = 0, SDCLK held high
SDCEN = 1, SDCLK enabled to clock

SSCEN SSCLK enable

SSCEN = 0, SSCLK held high
SSCEN = 1, SSCLK enabled to clock

CLK1EN CLKOUT1 enable

CLK1EN = 0, CLKOUT1 held high
CLK1EN = 1, CLKOUT1 enabled to clock

CLK2EN CLKOUT2 enable

CLK2EN = 0, CLKOUT2 held high
CLK2EN = 1, CLKOUT2 enabled to clock

SSCRT SBSRAM clock rate select

SSCRT = 0, SSCLK 1/2x CPU clock rate
SSCRT = 1, SSCLK 1x CPU clock rate

RBTR8 Requester arbitration mode

RBTR8 = 0, requester controls EMIF until a high-priority request
occurs
RBTR8 = 1, requester controls EMIF for a minimum of eight 
accesses

MAP Map mode, contains the value of the memory map mode of the device



EMIF Registers

6-9External Memory Interface

6.2.2 CE Space Control Registers

The four CE space control registers (shown in Figure 6–4 and described in
Table 6–4) correspond to the four CE memory spaces supported by the EMIF.
The MTYPE field identifies the memory type for the corresponding CE space. If
MTYPE selects SDRAM or SBSRAM, the remaining fields in the register do not
have any effect. If an asynchronous type is selected (ROM or asynchronous), the
remaining fields specify the shaping of the address and control signals for access
to that space. Modification of a CE space control register does not occur until that

CE space is inactive.  These features are discussed in Section 6.5.

Figure 6–4. EMIF CE (0/1/2/3) Space Control Register DiagramÁÁ
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Table 6–4. EMIF Space Control Registers Field Descriptions

Field Description

Read setup
Write setup

Setup width. Number of CLKOUT1 cycles of setup time for address (EA) , chip enable (CE),
and byte enables (BE[0-3]) before read strobe or write strobe falls. For asynchronous read
accesses, this is also the setup time of AOE before ARE falls.

Read strobe
Write strobe

Strobe width. The width of read strobe (ARE) and write strobe (AWE) in CLKOUT1 cycles.

Read hold
Write hold

Hold width. Number of CLKOUT1 cycles that address (EA) and byte strobes (BE[0-3]) are
held after read strobe or write strobe rises. For asynchronous read accesses, this is also
the hold time of OE after ARE rising.

MTYPE Memory typeMTYPE = 000b, 8-bit-wide ROM

MTYPE = 001b, 16-bit-wide ROM
MTYPE = 010b, 32-bit-wide Asynchronous Interface
MTYPE = 011b, 32-bit-wide SDRAM
MTYPE = 100b, 32-bit-wide SBSRAM
MTYPE = other, reserved
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6.2.3 SDRAM Control Register

The SDRAM control register controls SDRAM parameters for all CE spaces
that specify an SDRAM memory type in the MTYPE field of the associated CE
space control register. Because the SDRAM control register controls all
SDRAM spaces, each space must contain SDRAM with the same refresh and

page characteristics. The fields in this register are discussed in Section 6.3.

Figure 6–5. EMIF SDRAM Control Register
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Table 6–5. EMIF SDRAM Control Register Field Description

Field Description

TRC Specifies tRC value of the SDRAM in CLKOUT2 cycles.

TRC = tRC – 1

TRP Specifies tRP value of the SDRAM in CLKOUT2 cycles.

TRP = tRP – 1

TRCD Specifies tRCD value of the SDRAM in CLKOUT2 cycles.

TRCD = tRCD – 1

INIT Forces initialization of all SDRAM present. See section 6.3.1.

INIT = 0, no effect.
INIT = 1, initialize SDRAM in each CE space configured for SDRAM.

RFEN Refresh enable

RFEN = 0, SDRAM refresh disabled.
RFEN = 1, SDRAM refresh enabled.

SDWID SDRAM width select

SDWID = 0, Each external SDRAM space consists of four 8-bit SDRAMs
SDWID = 1, Each external SDRAM space consists of two 16-bit SDRAMs
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6.2.3.1 SDRAM Timing Register

The SDRAM refresh period register controls the refresh period in terms of
CLKOUT2 cycles (1/2� the CPU clock rate). Optionally, the period field can
send an interrupt to the CPU. Thus, this counter can be used as a general-
purpose timer if SDRAM is not used by the system. The counter field can be
read by the CPU. When the counter reaches 0, it is automatically reloaded with
the period and an interrupt, (SDINT), is sent to the interrupt selector. See sec-

tion 6.3.3 Refresh for more information on SDRAM refresh.

Figure 6–6. EMIF SDRAM Timing Register
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Table 6–6. EMIF SDRAM Timing Register Field Description

Field Description

PERIOD Refresh period in CLKOUT2 cycles

COUNTER Current value of the refresh counter
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6.3 SDRAM Interface

The EMIF supports 2 bank, 16M-bit and 4 bank, 64M-bit SDRAM, offering an
interface to high-speed and high-density memory. The EMIF supports the
SDRAM commands shown in Table 6–7. 16M-bit and 64M-bit SDRAM inter-

faces are shown in Figure 6–7 and Figure 6–8.

Table 6–9 describes the pin connection and related signals specific to SDRAM
operation. Table 6–8 shows all of the possible SDRAM configurations available

via the EMIF.

Table 6–7. EMIF SDRAM Commands

Command Function

DCAB Deactivate (also known as precharge) all banks

ACTV Activate the selected bank and select the row

READ Input the starting column address and begin the read operation

WRT Input the starting column address and begin the write operation

MRS Mode register set, configures SDRAM mode register

REFR Autorefresh cycle with internal address

Figure 6–7. EMIF to 16M-Bit SDRAM Interface

VCC

16M bit
SDRAM

D[31:0]

A[9:0]

A[10]

A[11]

DQM[3:0]

CKE

WE

CAS

RAS

CLK

CS

(EMIF)
interface
memory
External

ED[31:0]

EA[11:2]

SDA10

EA[13]

BE[3:0]

SDWE

SDCAS

SDRAS

CLKOUT2 or SDCLK

CEn



SDRAM Interface

 6-14

Figure 6–8. EMIF to 64M-Bit SDRAM Interface
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Table 6–8. SDRAM Memory Population

SDRAM
Size

SDRAM
Banks

SDRAM
Width

Devices 
per CE Space

Memory Size 
per CE Space

16M-bit 2 16-bit 2 4M-bytes

16M-bit 2 8-bit 4 8M-bytes

64M-bit 4 16-bit 2 16M-bytes
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Table 6–9. SDRAM Control Pins

EMIF Signal
SDRAM
Signal SDRAM Function

SDA10 A10 Address line A10/autoprecharge disable. Serves as a row address bit during
ACTV commands and also disables the autoprecharging function of SDRAM.

SDRAS RAS Row address strobe and command input. Latched by the rising edge of  CLK to
determine current operation. Valid only if CS is active- low during that clock edge.

SDCAS CAS Column address strobe and command Input. Latched by the rising edge of CLK
to determine current operation. Valid only if CS is active during that clock edge.

SDWE WE Write strobe and command input. Latched by the rising edge of CLK to determine
current operation. Valid only if CS is active during that clock edge.

BE[3:0] DQM[3:0] Data/output mask. DQM is an input/output buffer control signal. It disables writes
and places outputs in the high impedance state during reads when high. DQM
has a 2-CLK-cycle latency on reads and a 0-CLK-cycle latency on writes. DQM
pins serve essentially as byte strobes and are connected to BE[3:0] outputs.

CE3 or CE2 
or CE0

CS Chip select and command enable. CS must be active-low for a command to be
clocked into the SDRAM. CS does not affect data input or output once a write
or read has begun.

– CKE CKE clock enable. Tied high when interfaced to EMIF to enable clocking always.

CLKOUT2 CLK SDRAM clock input. Runs at 1/2 the CPU clock rate.

SDCLK CLK SDRAM clock input. Runs at 1/2 the CPU clock rate. Equivalent to CLKOUT2.
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6.3.1 SDRAM Initialization

The EMIF performs the necessary functions to initialize SDRAM if any of the
CE spaces are configured for SDRAM. An SDRAM initialization is requested

by a write of 1 to the INIT bit in the EMIF SDRAM control register.

The actual sequence of an initialization is as follows:

1) Send a DCAB command to all CE spaces configured as SDRAM.
2) Send three refresh commands.
3) Send an MRS command to all CE spaces configured as SDRAM.

The DCAB cycle is performed immediately after reset, provided the HOLD input
is not active (a host request). If HOLD is active, the DCAB command is not per-
formed until the hold condition is removed. The external requester should not
attempt to access any SDRAM banks in this case, unless it performs SDRAM

initialization and control itself.

6.3.2 Monitoring Page Boundaries

Because SDRAM is a paged memory type, the EMIF SDRAM controller monitors
the active row of SDRAM so that row boundaries are not crossed during the
course of an access. To accomplish this monitoring, the EMIF stores the address
of the open page and performs compares against that address for subsequent
accesses to the SDRAM bank. This storage and comparison is performed inde-

pendently for each CE space.

The number of address bits compared is a function of the page size programmed
in the SDWID field in the EMIF SDRAM control register. If SDWID = 0, the EMIF
expects CE spaces configured as SDRAM to have four 8-bit wide SDRAMs that
have page sizes of 512. Thus, the logical byte address bits compared are 25:11.
If SDWID = 1, the EMIF expects CE spaces with SDRAM to have two 16-bit-wide
SDRAMs that have page sizes of 256. Thus, the logical byte address bits

compared are 24:10.

If, during the course of an access, a page boundary is crossed, the EMIF
performs a DCAB command and starts a new row access. Also, a change
in direction of an access (read to write, or write to read) causes a page miss.

Simply ending the current access is not a condition that forces the active
SDRAM row to be closed. The EMIF leaves the active row open until it becomes
necessary to close it. This feature decreases the deactivate-reactivate over-
head and allows the interface to capitalize fully on address locality of memory

accesses.
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6.3.3 Refresh

The RFEN bit in the SDRAM control register selects the SDRAM refresh mode
of the EMIF. A value of 0 in RFEN disables all EMIF refreshes, and you must
ensure that refreshes are implemented in an external device. A value of 1 in

RFEN enables the EMIF to perform refreshes of SDRAM.

Refresh commands (REFR) enable all CE signals for all CE spaces selected to
use SDRAM (with the MTYPE field of the CE space control register). REFR is
automatically preceded by a DCAB command. This ensures all CE spaces se-
lected with SDRAM are deactivated. Following the DCAB command, the EMIF
begins performing trickle refreshes at a rate defined by the period value in the

EMIF SDRAM control register, provided no other SDRAM access is pending.

The SDRAM interface monitors the number of refresh requests posted to it and
performs the refreshes. Within the EMIF SDRAM control block, a 2-bit counter
monitors the backlog of refresh requests. The counter increments once for each
refresh request and decrements once for each refresh cycle performed. The
counter saturates at the value of 11, and also at 00. At reset, the counter is auto-
matically set to 11 to ensure that several refreshes occur before accesses begin.

The EMIF SDRAM controller prioritizes SDRAM refresh requests with other
data access requests posted to it from the EMIF requesters. The following

rules apply:

� A counter value of 11 invalidates the page information register, forcing the
controller to close the current SDRAM page. The value of 11 indicates an
urgent refresh condition. Thus, the EMIF SDRAM controller performs
three REFR commands, thereby decrementing the counter to 00 following
the DCAB command before proceeding with the remainder of the current
access. If SDRAM is present in multiple CE spaces, the DCAB-refresh
sequence occurs in all spaces containing SDRAM.

� During idle times on the SDRAM interface(s), if no request is pending from
the EMIF, the SDRAM interface performs REFR commands as long as the
counter value is nonzero. This feature reduces the likelihood of having to
perform urgent refreshes during actual SDRAM accesses later. If SDRAM
is present in multiple CE spaces, this refresh occurs only if all interfaces
are idle with invalid page information.
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The EMIF SDRAM interface performs CAS-before-RAS refresh cycles for
SDRAM. Some SDRAM manufacturers call this autorefresh. Prior to a REFR
command, a DCAB command is performed to all CE spaces specifying
SDRAM to ensure that all active banks are closed. Page information is always
invalid before and after a REFR command; thus, a refresh cycle always forces

a page miss. A deactivate cycle is required prior to the refresh command.

Figure 6–9. SDRAM Refresh

REFR command

SDWE

SDCAS

SDRAS

CE

SDCLK

6.3.4 Mode Register Set

The EMIF automatically performs a DCAB command followed by an MRS
command whenever the INIT field in the EMIF SDRAM control register is set.
INIT can be set by device reset or by a user write. Like DCAB and REFR com-
mands, MRS commands are performed to all CE spaces configured as
SDRAM through the MTYPE field. Following the MRS cycle, the INIT bit clears
itself to prevent multiple MRS cycles. Following a hold, the external requester
should return it to its original value before returning control of the bus to the
EMIF. Alternatively, you could poll the HOLD and HOLDA bits in the EMIF global
control register and, upon detecting completion of an external hold, reinitialize

the EMIF by setting the INIT bit in the EMIF SDRAM control register.

The EMIF always uses a mode register value of 0x0030 during a MRS command.
Figure 6–10 shows the mapping between mode register bits, EMIF pins, and the

mode register value.

Table 6–10 shows the SDRAM configuration selected by this mode register
value.
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Figure 6–10. Mode Register Value

ÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Mode register bitÁÁÁ
ÁÁÁ

13ÁÁÁ
ÁÁÁ

12ÁÁÁ
ÁÁÁ

11ÁÁÁ
ÁÁÁ

10ÁÁÁ
ÁÁÁ

9ÁÁÁ
ÁÁÁ

8ÁÁÁ
ÁÁÁ

7 ÁÁ
ÁÁ

6ÁÁÁ
ÁÁÁ

5ÁÁ
ÁÁ

4ÁÁÁ
ÁÁÁ

3ÁÁ
ÁÁ

2ÁÁÁ
ÁÁÁ

1ÁÁÁ
ÁÁÁ

0 Á
ÁÁÁ

ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

EMIF PinsÁÁÁ
ÁÁÁ

EA15ÁÁÁ
ÁÁÁ

EA14ÁÁÁ
ÁÁÁ

EA13ÁÁÁ
ÁÁÁ

SDA10ÁÁÁ
ÁÁÁ

EA11ÁÁÁ
ÁÁÁ

EA10ÁÁÁ
ÁÁÁ

EA9ÁÁ
ÁÁ

EA8ÁÁÁ
ÁÁÁ

EA7ÁÁ
ÁÁ

EA6ÁÁÁ
ÁÁÁ

EA5ÁÁ
ÁÁ

EA4ÁÁÁ
ÁÁÁ

EA3ÁÁÁ
ÁÁÁ

EA2Á
ÁÁÁ

ÁÁ
ÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Field ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Reserved ÁÁÁ
ÁÁÁ
ÁÁÁ

Write
burst
length

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ReservedÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Read latencyÁÁÁ
ÁÁÁ
ÁÁÁ

S/IÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Burst length Á
Á
ÁÁÁ

ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Value
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁ
ÁÁ

0
ÁÁÁ
ÁÁÁ

1
ÁÁ
ÁÁ

1
ÁÁÁ
ÁÁÁ

0
ÁÁ
ÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ

0
Á
ÁÁÁ

ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
Á
Á

Table 6–10. Implied SDRAM Configuration by MRS Value

Field Selection

Write burst length 1

Read latency 3

Serial/interleave burst type Serial

Burst length 1
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Figure 6–11.SDRAM Module Register Set: MRS Command
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6.3.5 Address Shift

Because the same EMIF pins address the row and column address, the EMIF
interface appropriately shifts the address in row and column address selec-
tion. Table 6–11 shows the translation between bits of the byte address and
how they appear on the EA pins for row and column addresses. SDRAMs use
the address inputs for control as well as address. With this consideration, the

following items clarify the figure:

� The address line that corresponds to the SDRAM’s bank select field (EA11
on 16M-bit SDRAM; EA13 and EA12 on 64M-bit SDRAM) is latched inter-
nally by the SDRAM controller. This ensures that the bank select remains
correct during READ and WRT commands. Thus, the EMIF maintains
these values as shown in both row and column addresses.

� The EMIF forces the address bit below bank select (SDA10) to be low
unless RAS is active, yet high during DCAB commands at the end of a page
of accesses. This prevents the autoprecharge from occurring following a
READ or WRT command.

Table 6–11. Byte Address to EA Mapping for SDRAM RAS and CAS
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Note: The RAS and CAS values indicate the bit of the byte address present on the corresponding EA pin during a RAS or CAS
cycle.

6.3.6 Timing Requirements

Five SDRAM timing parameters decouple the EMIF from SDRAM speed limita-
tions. Three of these parameters are programmable via the EMIF SDRAM
control register; the remaining two are assumed to be static values as shown
in Table 6–12. The three programmable values assure that EMIF control of
SDRAM obeys these minimum timing requirements. Consult the SDRAM data

sheet for the parameters appropriate for your particular SDRAM.
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Table 6–12. SDRAM Timing Parameters

Parameter Description
Value in CLKOUT2 
Cycles

tRC REFR command to ACTV, MRS, or subsequent REFR command TRC + 1

tRCD ACTV command to READ or WRT command TRCD + 1

tRP DCAB command to ACTV, MRS, or REFR command TRP +1

tRAS ACTV command to DEAC to DCAB command 7

tnEP Overlap between read data and a DCAB command 2

6.3.7 Deactivation

The SDRAM deactivation (DCAB) is performed after a hardware reset or when
INIT = 1 in the EMIF SDRAM control register. This cycle is also required by the
SDRAMs prior to REFR, MRS, and when a page boundary is crossed. During
the DCAB command, SDA10 is driven high to ensure that all SDRAM banks

are deactivated.
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Figure 6–12. SDRAM Deactivation
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6.3.8 SDRAM Read

During an SDRAM read, the selected bank is activated with the row address
during the ACTV command. In this example, four read commands are performed
at four different column addresses. The EMIF uses a CAS latency of 3 and a burst
length of 1. The 3-cycle latency causes data to appear three cycles after the
corresponding column address. Following the last column access, a DCAB
cycle is performed to deactivate the bank. An idle cycle is inserted between
the final read command and the DCAB command to meet SDRAM timing require-
ments. The transfer of data finishes during and past the DCAB command. If no
new access is pending, the DCAB command is not performed until such time as
the page information becomes invalid (see section 6.3.2). The values on
EA[13:11] during column accesses and the DCAB command are the values

latched during the ACTV command.

Figure 6–13. SDRAM Read With CAS Latency 3, Burst Length 1
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6.3.9 SDRAM Write

All SDRAM writes have a burst length of 1. The bank is activated with the row
address during the ACTV command. There is no latency on writes, so data is out-
put on the same cycle as the column address. Writes to particular  bytes are dis-
abled via the appropriate DQM inputs; this feature allows for byte and halfword
writes. Following the final write command, an idle cycle is inserted to meet
SDRAM timing requirements. The bank is then deactivated with a DCAB com-
mand and the memory interface can begin a new page access. If no new access
is pending, the DCAB command is not performed until such time as the page
information becomes invalid (see section 6.3.2). The values on EA[13:11] dur-
ing column accesses and the DEAC command are the values latched during

the ACTV command.

Figure 6–14. SDRAM Write With Burst Length 1
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6.4 SBSRAM Interface

As shown in Figure 6–15, the EMIF interfaces directly to industry-standard
synchronous burst SRAMs. This memory interface allows a high-speed
memory interface without some of the limitations of SDRAM. Most notably,
since SBSRAM are SRAM devices, random accesses in the same direction
can occur in a single cycle. The SBSRAM interface can run at either the CPU
clock speed or at 1/2 of this rate. The selection is made based on the setting

of the SSCRT bit in the EMIF global control register.

The four SBSRAM control pins are latched by the SBSRAM on the rising SSCLK
edge to determine the current operation. These signals are valid only if the chip
select line for the SBSRAM is low. The ADV signal is used to allow the SBSRAM
device to generate addresses internally for interfacing to controllers that cannot
provide addresses quickly enough. The EMIF does not need to use this signal

because it can generate the address at the required rate.

Figure 6–15. EMIF-SBSRAM Interface
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Table 6–13. EMIF SBSRAM Pins

EMIF Signal SBSRAM Signal SBSRAM Function

SSADS ADS Address strobe

SSOE OE Output enable

SSWE WE Write enable

SSCLK CLK SBSRAM clock
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6.4.1 Optimizing SBSRAM Accesses

SBSRAMs are latent by their architecture, meaning that read data follows
address and control information. Consequently, the EMIF inserts cycles between
read and write commands to ensure that no conflict exists on the ED[31:0] bus.
The EMIF keeps this turnaround penalty to a minimum. The initial 2-cycle penalty
is present when changing directions on the bus. In general, the first access of a

burst sequence incurs a 2-cycle startup penalty.

6.4.2 SBSRAM Reads

Figure 6–16 shows a 16-word read of an SBSRAM. Every access strobes a
new address into the SBSRAM, indicated by the SSADS strobe low. The first
access requires an initial startup penalty of two cycles; thereafter, all accesses

occur in a single SSCLK cycle.

Figure 6–16. SBSRAM Read of 16 Words
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6.4.3 SBSRAM Writes

Figure 6–17 shows a 6-word write of an SBSRAM. Every access strobes a new
address into the SBSRAM. The first access requires an initial startup penalty of

two cycles; thereafter, all access can occur in a single SSCLK cycle.

Figure 6–17. SBSRAM Write of Six Words
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6.5 Asychronous Interface

The asynchronous interface offers configurable memory cycle types, to interface
to a variety of memory and peripheral types, including SRAM, EPROM, Flash

memory, as well as FPGA and ASIC designs.

Table 6–14 lists the asynchronous interface pins.

Figure 6–18 shows an interface to standard SRAM. Figure 6–19 shows an
interface to a FIFO buffer. Figure 6–20, Figure 6–21, and Figure 6–22 show
interfaces to 8-, 16-, and 32-bit ROM. Although ROM can be interfaced at any
of the CE spaces, it is often used at CE1 because that space can be configured

for widths of less than 32 bits.

Table 6–14. EMIF Asychronous Interface Pins

EMIF
Signal Function

AOE Output enable. Active-low during the entire period of a read access.

AWE Write enable. Active-low during a write transfer strobe period.

ARE Read enable. Active-low during a read transfer strobe period.

ARDY Ready. Input used to insert wait states into the memory cycle.

Figure 6–18. EMIF SRAM Interface
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Figure 6–19. EMIF-FIFO Interface
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Figure 6–20. EMIF-ROM 8-Bit Interface
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Figure 6–21. EMIF-ROM 16-Bit Interface
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Figure 6–22. EMIF-ROM 32-Bit Interface
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6.5.1 ROM Modes

The EMIF supports 8- and 16-bit wide ROM access modes as selected by the
MTYPE field in the EMIF CE space control register. In reading data from these
narrow-width memory spaces, the EMIF packs multiple reads into one 32-bit-
wide value. This mode is primarily intended for word access to 8-bit and 16-bit

ROM devices. Thus, the following restrictions apply:

� Read operations always read 32 bits, regardless of the access size or the
memory width.

� The address is shifted up appropriately to provide the correct address to
the narrow memory. The shift amount is 1 for 16-bit ROM and 2 for 8-bit
ROM. Thus, the high address bits are shifted out and accesses wrap
around if that CE space spans the entire EA bus. Table 6–15 shows the
address bits present on the EA bus during an access to CE1 space for all
possible asynchronous memory widths.

� The EMIF always reads the lower addresses first and packs these into the
LSBytes and packs subsequent accesses into the higher order bytes. Thus,
the expected packing format in ROM is always little-endian, regardless of
the value of the LENDIAN bit.

Table 6–15. Byte Address to EA Mapping for Asynchronous Memory Widths

EA Line

Width 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

�32 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

�16 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

�8 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

6.5.1.1 8-Bit ROM

In 8-bit ROM mode, the address is left shifted by 2 to create a byte address
on EA to access byte-wide ROM. The EMIF always packs four consecutive
bytes aligned on a 4-byte (byte address = 4N) boundary into a word access.
The bytes are fetched in the following address order: 4N, 4N + 1, 4N + 2,
4N + 3. Bytes are packed into the 32-bit word in the following little endian order

from MSByte to LSByte: 4N + 3, 4N + 2, 4N + 1, 4N.
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6.5.1.2 16-Bit ROM

In 16-bit ROM mode, the address is left shifted by 1 to create a half-word address
on EA to access 16-bit-wide ROM. The EMIF always packs two consecutive half-
words aligned on a 4-byte (byte address = 4N) boundary into a word access. The
halfwords are fetched in the following address order: 4N, 4N + 2. Halfwords are
packed into the 32-bit word in the following little-endian order from MSHalfword

to LSHalfword: 4N + 2, 4N.

6.5.2 Programmable ASRAM Parameters

The EMIF allows a high degree of programmability for shaping asynchronous
accesses. The programmable parameters that allow this are:

� Setup:  The time between the beginning of a memory cycle (CE low, ad-
dress valid) and the activation of the read or write strobe

� Strobe:  The time between the activation and deactivation of the read
(ARE) or write strobe (AWE)

� Hold:  The time between the deactivation of the read or write strobe and the
end of the cycle (which can be either an address change or the deactivation
of the CE signal)

These parameters are programmable in terms of CPU clock cycles via fields
in the EMIF CE space control registers. Separate setup, strobe, and hold
parameters are available for read and write accesses. The setup and strobe
fields have minimum count of 1. For setup and strobe, a count of 0 is treated
as a count of 1. Hold can be set to 0 cycles. Figure 6–23 illustrates these

parameters.

6.5.3 Asynchronous Reads

Figure 6–23 illustrates an asynchronous read with SETUP and HOLD set to 1
and STROBE set to 3. An asynchronous read proceeds as follows:

� At the beginning of the setup period:

� CE becomes active
� AOE becomes active
� BE[3:0] becomes valid.
� EA becomes valid.

� At the beginning of a strobe period, ARE becomes active

� At the beginning of a hold period:
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� ARE becomes inactive high

� Data is sampled on the CLKOUT1 rising edge concurrent with the
beginning of the hold period (end of the strobe period) and just prior to

the ARE low-to-high transition.

� At the end of the hold period:

� CE becomes inactive as long as another read access to the same CE
space is not scheduled for the next cycle.

� AOE becomes inactive as long as another read access to the same
CE space is not scheduled for the next cycle.

Figure 6–23. Asynchronous Read Timing Example

BE

A

Q

CLKOUT1

CE

BE[3:0]

EA[13:0]

ED[31:0]

AOE

ARE

AWE

ARDY

ARDY setup

ARDY hold

6.5.4 Asynchronous Writes

Figure 6–24 depicts two back-to-back asynchronous write cycles with the
ARDY signal pulled high (always ready).

� At the beginning of the setup period:

� CE becomes active
� BE[3:0] becomes valid.
� EA becomes valid.
� ED becomes valid.
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� At the beginning of a strobe period, AWE becomes inactive.

� At the beginning of a hold period:

� AWE becomes inactive

� Data is sampled on the CLKOUT1 rising edge concurrent with the
beginning of the hold period (end of the strobe period) and just prior to

the AWE low-to-high transition.

� At the end of the hold period.

� ED goes into the high-impedance state only if as another write access
to the same /CE space is NOT scheduled for the next cycle.

� CE becomes inactive only if another write access to the same CE
space is not scheduled for the next cycle.

� If the next access is a read a cycle of turn around is inserted before
AOE is enabled.

Figure 6–24. Asynchronous Write Timing Example

BE1 BE2

A1 A2

D1 D2

CLKOUT1

CE

BE[3:0]

EA[13:0]

ED[31:0]

AOE

ARE

AWE

ARDY

6.5.5 Ready Input

The read cycle in Figure 6–23 illustrates read operation. In addition to pro-
grammable access shaping, you can insert extra cycles into the strobe period
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by deactivating the ARDY input. The ready input is internally synchronized to
the CPU clock. Ready operation is as follows:

� If during a rising edge of CLKTOUT1 the STROBE count is 1 or 0, and the
ARDY signal was active during the previous rising edge, the next e\second
rising edge of CLKOUT1 will end the ARE_ or AWE_ strobe. Otherwise the
read or write cycle will be extended by at least one more CLKOUT1 period.

� The miniumum strobe field width value is 3 if inactive (low). ARDY is used
to extend the asynchronous read or write cycles. Otherwise, if the ARDY
is always active (high), the minimum strobe width is 1.
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6.6 Hold Interface

The EMIF responds to hold requests for the external bus. The hold handshake
allows an external device and the EMIF to share the external bus. The hand-

shake mechanism uses two signals:

� HOLD: Asynchronous hold request input. The external device drives this
pin low to request bus access. HOLD is the highest priority request that
the EMIF can receive during active operation. When the hold is requested,
the EMIF stops driving the bus at the earliest possible moment, which may
entail completion of the current accesses, device deactivation, and
SDRAM bank deactivation. The external device must continue to drive
HOLD low for as long as it wants to drive the bus. The HOLD input is inter-
nally synchronized to the CPU clock.

� HOLDA: Hold acknowledge output. The EMIF asserts this signal active
after it has placed its signal outputs in the high-impedance state. The
external device may then drive the bus as required. The EMIF places all
outputs in the high-impedance state with the exception of the clock out-
puts: CLKOUT1, CLKOUT2, SDCLK, and SSCLK.

There is no mechanism to ensure that the external device does not attempt to
drive the bus indefinitely. The user should be aware of system-level issues,
such as refresh, that may need to be performed. During host requests, the
refresh counters within the EMIF continue to log refresh requests; however,
no refresh cycles can be performed until bus control is granted back to the
EMIF by returning the HOLD input to the inactive level. You can prevent an

external hold by setting the NOHOLD bit in the EMIF global control register.
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6.7 Priority

Table 6–16 illustrate the priority scheme that the EMIF uses in the case of multi-
ple pending requests. The priority scheme may change if the DMA channel that
is issuing a request through the DMA controller is of high priority. This mode
is set in the DMA controller by setting the PRI bit in the DMA channel primary

control register.

Once a requester (in this instance, the refresh controller is considered a
requester) is prioritized and chosen, no new requests are recognized until ei-
ther the chosen requester stops making requests or a subsequent higher priority
request occurs. In this case, all issued requests of the previous requester are

allowed to finish while the new requester starts making its requests.

If the arbitrate bit of the EMIF global control register is set (RBTR8 = 1), once a
requester gains control of the EMIF it maintains control as long as the requester
needs the EMIF; or if eight word requests have occurred, until a higher priority
requester requests the EMIF. If a higher priority requester needs the EMIF, it will
not get control until the current controller relinquishes control or until eight word
requests have finished. If the arbitrate bit is not set (RBTR8 = 0), a requester
maintains control of the EMIF as long as it needs the EMIF or until a higher priority
requester requests the EMIF. The current controller is interrupted by a higher

priority requester, regardless of the number of requests that have occurred.

Table 6–16. EMIF Prioritization of Requests

Priority Requester PRI = 1 Requester PRI = 0

Highest External hold

Mode register set

Urgent refresh

DMA controller DMC

DMC PMC

PMC DMA controller

Lowest Trickle refresh
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6.8 Clock Output Enabling

To reduce EMI radiation, the EMIF allows disabling (holding high) CLKOUT2,
CLKOUT1, SSCLK, and SDCLK. This feature is performed via the CLK2EN,

CLK1EN, SSCEN, and SDCEN bits in the EMIF SDRAM control register.

6.9 Emulation Halt Operation

The EMIF continues operating during emulation halts. Emulator accesses
through the EMIF can have the effect of changing EMIF state and forcing startup

penalties once the halt is stopped.

6.10 Power Down

In power down 2 mode, refresh is enabled

SSCLK, CLKOUT1, CLKOUT2 are held low during powerdown 2 and power-
down 3 modes.

In power down 3 mode, EMIF acts as if it were in reset.

Clock Output Enabling / Emulation Halt Operation / Power Down
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Boot Configuration, Reset, and Memory Map

Describes the boot modes and associated memory maps available for the
TMS320C32062xx.
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7.1 Overview

The ’C62xx uses a variety of boot configurations to determine what actions the
device is to perform after reset for proper device initialization. The configurable

options include:

� Selection of the memory map which determines whether internal or external
memory is mapped at address 0

� Selection of the type of external memory is mapped at address 0 if external
memory is indeed mapped there

� Selection of the boot process used to initialize the memory at address 0
before the CPU is allowed to run

7.2 Device Reset

The external device reset uses an active-low signal, RESET. While RESET is
low, the device is held in reset and is initialized to the prescribed reset state. All
3-state outputs are placed in a state of high impedance, and all other outputs
are returned to their default states. RESET is latched with the device clock input
(CLKIN) as well as the CPU clock (CLKOUT1). Thus, RESET has a minimum
low time in terms of CLKIN as well as CPU clock cycles. The precise timing re-
quirements for device reset are described in the specific device data sheet. The
rising edge of RESET starts the processor running with  the prescribed boot con-
figuration. The length of the RESET pulses may have to be stretched if the PLL
needs to sync up followinug power-up or when PLL configuration pins change

during reset.

Overview / Device Reset
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7.3 Boot Configuration

External pins BOOTMODE[4:0] select the boot configuration. The values of
BOOTMODE[4:0] are latched with the rising edge of RESET. These pins must
be valid with the proper setup and hold to this signal. Refer to the data sheet

for specific timing requirements.

Table 7–1. Boot Configuration Summary 

BOOTMODE [4:0]
Memory
Map Memory at Address 0 Boot Process

00000 MAP 0 SDRAM:4 8-bit devices
(SDWID = 0)

None

00001 MAP 0 SDRAM:2 16-bit devices
 (SDWID = 1)

None

00010 MAP 0 32-bit asynchronous with default timing None

00011 MAP 0 1/2 rate SBSRAM None

00100 MAP 0 1x rate SBSRAM None

00101 MAP 1 Internal None

00110 MAP 0 External; default values HPI

00111 MAP 1 Internal HPI

01000 MAP 0 SDRAM:4 banks of 8-bit memory 
(SDWID = 0)

8-bit ROM; with default
timings

01001 MAP 0 SDRAM:2 banks of 16-bit memory
(SDWID = 1)

8-bit ROM; with default
timings

01010 MAP 0 32-bit asynchronous with default timing 8-bit ROM; with default 
timings

01011 MAP 0 1/2 rate SBSRAM 8-bit ROM; with default 
timings

01100 MAP 0 1x rate SBSRAM 8-bit ROM; with default 
timings

01101 MAP 1 Internal 8-bit ROM; with default 
timings

01110 Reserved

01111 Reserved
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Table 7–1. Boot Configuration Summary (Continued)

BOOTMODE [4:0] Boot ProcessMemory at Address 0
Memory
Map

10000 MAP 0 SDRAM 4 banks of 8-bit (SDWID=0) 16-bit ROM; with default 
timings

10001 MAP 0 SDRAM:2 banks of 16-bit memory
(SDWID = 1)

16-bit ROM with default 
timings

10010 MAP 0 32-bit asynchronous with default 
timing

16-bit ROM with default 
timings

10011 MAP 0 1/2 rate SBSRAM 16-bit ROM with default 
timings

10100 MAP 0 1x rate SBSRAM 16-bit ROM with default 
timings

10101 MAP 1 Internal 16-bit ROM with default 
timings

10110 Reserved

10111 Reserved

11000 MAP 0 SDRAM:4 banks of 8-bit memory 
(SDWID = 0)

32-bit ROM with default 
timings

11001 MAP 0 SDRAM:2 banks of 16-bit memory
(SDWID = 1)

32-bit ROM with default 
timings

11010 MAP 0 32-bit asynchronous with default 
timing

32-bit ROM with default 
timings

11011 MAP 0 1/2 rate SBSRAM 32-bit ROM with default 
timings

11100 MAP 0 1x rate SBSRAM 32-bit ROM with default 
timings

11101 MAP 1 Internal 32-bit ROM with default 
timings

11110 Reserved

11111 Reserved
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7.3.1 Memory Map

The two memory maps, MAP 0 and MAP 1 are summarized in Table 7–2. They
differ in that MAP 0 has external memory mapped at address 0, and MAP 1 has
internal memory mapped at address 0. Spaces allocated for internal peripherals
represent space reserved for that purpose. The entire memory space reserved
may not be populated. Refer to the appropriate chapter for the peripherals and

internal memory.

Table 7–2. Memory Map Summary

Size
Description of memory block in ...

Address Range (Hex)
Size

(bytes) MAP 0 MAP 1

00000000 003FFFFF 4M External memory interface CE 0 Internal program RAM

00400000 00FFFFFF 12M External memory interface CE 0

01000000 013FFFFF 4M External memory interface CE 1

01400000 017FFFFF 4M Internal program RAM External memory interface CE 1

01800000 0183FFFF 256K Internal peripheral bus EMIF registers

01840000 0187FFFF 256K Internal peripheral bus DMA controller registers

01880000 018BFFFF 256K Internal peripheral bus HPI register

018C0000 018FFFFF 256K Internal peripheral bus MCSP 0 registers

01900000 0193FFFF 256K Internal peripheral bus MCSP 1 registers

01940000 0197FFFF 256K Internal peripheral bus Timer 0 registers

01980000 019BFFFF 256K Internal peripheral bus Timer 1 registers

019C0000 019FFFFF 256K Internal peripheral bus Interrupt selector registers

01A00000 01FFFFFF 6M Internal peripheral bus Reserved

02000000 02FFFFFF 16M External memory interface CE 2

03000000 03FFFFFF 16M External memory interface CE 3

04000000 7FFFFFFF 2G-64M Reserved

80000000 803FFFFF 4M Internal data RAM

80400000 FFFFFFFF 2G-4M Reserved

7.3.2 Memory at Address Reset Address

The boot configuration determines the type of memory located at the reset
address for processor operation, address 0, as shown in Table 7–1. When the
BOOTMODE [4:0] pins select MAP 1, this memory is internal. When the device
mode is in MAP 0, the memory is external. When external memory is selected,
BOOTMODE [4:0] also determine the type of memory at the reset address.
These options effectively provide alternative reset values to the appropriate

EMIF control registers.
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7.3.3 Boot Processes

The boot process is determined by the BOOTMODE [4:0] pins as shown in
Table 7–1. Three types of boot processes are available:

� No boot process: The CPU begins direct execution from the memory lo-
cated at address 0. If SDRAM is used in the system, the CPU is held until
SDRAM initialization is complete.

� ROM boot process: The memory located at the beginning of CE1 is copied
to address 0 by the DMA controller. Although the boot process begins
when the device is released from external reset, this transfer occurs while
the CPU is internally held in reset. The amount of memory copied is 16K
32-bit words. This boot process also lets you choose the width of the ROM.
In this case, the EMIF can automatically assemble consecutive 8-bit bytes
or 16-bit halfwords to form the 32-bit instruction words to be moved. These
values are expected to be stored in little endian format in the external
memory, typically a ROM device.

The transfer is automatically done by channel 0. The DMA channel is set
up to perform an unsynchronized, single-frame block transfer of 16K 32-bit
words from the beginning of CE1 to address 0. For SDRAM, the EMIF
postpones transfers until the SDRAM has been initialized. The location of
CE1 depends on the memory map selected.

When DMA_INT0 becomes active (exhibits a low-to-high transition), after
completion of the block transfer, the CPU is removed from reset and allowed
to run from address 0. The DMA_INT0 condition is not latched by the CPU
because it occurs while the CPU is still in reset. The DMA_INT0 wakes the
CPU from internal reset only if the ROM boot process is selected.
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� HPI boot process: The CPU is held in reset while the remainder of the
device awakes from reset. During this period, an external host can initial-
ize the CPU’s memory space as necessary through the HPI, including ex-
ternal memory configuration registers. Once external memory has been
configured, the host can then access any external sections it needs to
complete initialization. Once the host is finished with all necessary initiali-
zation, it writes a 1 to the DSPINT bit in the HPI control register (HPIC).
This write causes an active transition on the DSPINT signal. This transition
causes the boot configuration logic to remove the CPU from its reset state.
The CPU then begins execution from address 0. The DSPINT condition
is not latched by the CPU because it occurs while the CPU is still in reset.
Also, DSPINT only wakes the CPU from internal reset only if the HPI boot
process is selected.
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Describes the features and operation of the two multichannel buffered serial ports.
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List of Acronyms

AC97 Audio Codec ‘97 (component specification)

CLKG Output clock of Sample Rate Generator

CLKGDV Divider for Sample Rate Generator Clock

CLKR(P/M) Clock for Receive (Polarity/Mode)

CLKSTP Clock Stop

CLKX(P/M) Clock for Transmit (Polarity/Mode)

DLB Digital Loop Back

DR Data Receive

DRR Data Receive Register

DX Data Transmit

DXR Data Transmit Register

FPER Frame Period

FSG Frame Sync output from sample rate generator

FSGM FSG Mode

FSR(P/M) Frame Synchronization (Polarity/Mode) for Receive

FSX(P/M) Frame Synchronization (Polarity/Mode) for Transmit

FWID Frame Width

GSYNC Sample Rate Generator Clock Synchronization

IIS Inter–IC Sound bus (serial link for digital audio)

IOM ISDN–Oriented Modular (Architecture and Interfaces)

IOM2 Extended IOM

MCR Multi–channel Control Register

McBSP Multi Channel Serial Port

MVIP Multi–Vendor Integration Protocol

PCR Pin Control Register

RBR Receive Buffer Register

RCBLK Receive Current Block
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List of Acronyms  (Continued)

RCER Receive Channel Enable Register

RCR Receive Control Register

RDATDLY Receive Data Delay

REVT Receive Synchronization Event to DMA

RFIG Receive Frame Ignore

RFRLEN(1/2) Receive Frame Length for  Frame Phase 1 or 2

RFULL RSR (Receive Shift Register) Full

RINT Receive Interrupt to CPU

RIOEN Receive I/O Enable

RJUST Receive data (in RSR) Justification

RMCM Receive Multi–Channel Mode

RP(A/B)BLK Receive Partition A/B Block

RPHASE Receive (number of) Phases

RRDY Receiver Ready

RRST Receiver Reset

RSYNCERR Receive Synchronization Error

RWDLEN(1/2) Receive Word Length for  Frame Phase 1 or 2

SPCR Serial Port Control Register

SPI Serial Peripheral Interface (Synchronous)

SRGR Sample Rate Generator Register

ST–bus Serial Telecom Bus (Mitel Semiconductor)

XCBLK Transmit Current Block

XCER Transmit Channel Enable Register

XCR Transmit Control Register

XDATDLY Transmit Data Delay

XEMPTY XSR (Transmit Shift Register) Empty

XEVT Transmit Synchronization Event to DMA
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List of Acronyms  (Continued)

XFIG Transmit Frame Ignore

XFRLEN(1/2) Transmit Frame Length for  Frame Phase 1 or 2

XINT Transmit Interrupt to CPU

XIOEN Transmit I/O Enable

XMCM Transmit Multi–Channel Mode

XP(A/B)BLK Transmit Partition A/B Block

XPHASE Transmit (number of) Phases

XRDY Transmitter Ready

XRST Transmitter Reset

XSR Transmit Shift Register

Multichannel Buffered Serial Port
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8.1 Features

The Multichannel Serial Port (McBSP) is based on the standard serial port interface
found on the TMS320C2x, ’C2xx, ’C5x, and ’C54x devices. Like its predecessors

the McBSP provides:

� Full-Duplex communication

� Double buffered data registers which allow a continuous data stream

� Independent framing and clocking for receive and transmit

� Direct interface to industry standard Codecs, Analog Interface Chips (AICs),
and other serially connected A/D and D/A devices

� External shift clock generation or an internal programmable frequency shift
clock

� Autobuffering capability through the five channel DMA controller.

In addition, the McBSP has the following capabilities:

� Direct interface to:

� T1/E1 framers

� MVIP switching compatible and ST-BUS compliant devices

� IOM-2 compliant devices

� AC97 compliant devices. The necessary multi-phase frame synchro-
nization capability is provided

� IIS compliant devices

� SPI� devices

� Multichannel transmit and receive of up to 128 channels.

� A wide selection of data sizes including 8-, 12-, 16-, 20-, 24-, or 32-bits

Note:

Data sizes are referred to as ‘word’ or ‘serial word’ throughout this document.
Therefore when ‘word’ is used, it can be either 8-, 12-, 16-, 20-, 24-, or 32-bits
in contrast to the true definition of word as being 32-bits.

� µ-Law and A-Law companding

� 8-bit data transfers with LSB or MSB first

� Programmable polarity for both frame synchronization and data clocks

� Highly programmable internal clock and frame generation
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8.2 General Description

The McBSP consists of a data path and control path as shown in Figure 8–1.
Seven pins listed in Table 8–1 connect the control and data paths to external

devices.

Figure 8–1. McBSP Internal Block Diagram

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

SRGR

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁ

ÁÁ
ÁÁ

RBRÁÁÁ
ÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

CLKS

FSR

FSX

CLKR

CLKX

DX

DR

XEVT

REVT

XINT

RINT

events to DMA
Synchronization

Interrupts to CPU

bus
peripheral
32-bit

McBSP

Compand

XSR

RSR

Compress

Expand DRR

DXR

Multichannel
selection

and control
generation
frame sync
generation

Clock

PCR

XCER

RCER

MCR

XCR

SPCR

RCR



General Description

8-7Multichannel Buffered Serial Port

Data is communicated to devices interfacing to the McBSP via the Data Trans-
mit (DX) pin for transmission and the Data Receive (DR) pin for reception. Con-
trol information in the form of clocking and frame synchronization is communi-
cated via CLKX, CLKR, FSX, and FSR. The ’C6x communicates to the McBSP
via 32-bit wide control registers accessible via the internal peripheral bus. Either
the CPU or DMA reads the received data from the Data Receive Register (DRR)
and writes the data to be transmitted to the Data Transmit Register (DXR). Data
written to the DXR is shifted out to DX via the Transmit Shift Register (XSR).
Similarly, receive data on the DR pin is shifted into RSR and copied into RBR.
RBR is then copied to DRR which can be read by the CPU or DMA. This allows
internal data movement and external data communications simultaneously. The
remaining registers which are accessible to the CPU configure the control
mechanism of the McBSP. These registers are listed in Table 8–2. The control
block consists of internal clock generation, frame synchronization signal gen-
eration, and their control, and multichannel selection. This control block sends
notification of important events to the CPU and DMA via four signals shown

in Table 8–3.

Table 8–1. McBSP Interface Signals

Pin I/O/Z Description

CLKR I/O/Z Receive clock

CLKX I/O/Z Transmit clock

CLKS I External clock

DR I Received serial data

DX O/Z Transmitted serial data

FSR I/O/Z Receive frame synchronization

FSX I/O/Z Transmit frame synchronization
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Table 8–2. McBSP Registers

Hex Byte Address

†McBSP 0 McBSP 1 Acronym McBSP Register Name † Section

– – RBR Receive Buffer Register 8.2

– – RSR Receive Shift Register 8.2

– – XSR Transmit Shift Register 8.2

018C0000 01900000 DRR Data Receive Register‡ 8.2

018C0004 01900004 DXR Data Transmit Register 8.2

018C0008 01900008 SPCR Serial Port Control Register 8.2.1

018C000C 0190000C RCR Receive Control Register 8.2.2

018C0010 01900010 XCR Transmit Control Register 8.2.2

018C0014 01900014 SRGR Sample Rate Generator Register 8.5.1.1

018C0018 01900018 MCR Multichannel Register 8.6.1

018C001C 0190001C RCER Receive Channel Enable Register 8.6.3.1

018C0020 01900020 XCER Transmit Channel Enable Register 8.6.3.1

018C0024 01900024 PCR Pin Control Register 8.2.1 and
8.8

† The RBR, RSR, and XSR are not directly accessible via the CPU or DMA.
‡ This register is read-only to the CPU and DMA.

Table 8–3. McBSP CPU Interrupts and DMA Event Synchronization

Interr pt Name Description SectionInterrup t Name Descr iption Section

RINT Receive Interrupt to CPU 8.3.3

XINT Transmit Interrupt to CPU 8.3.3

REVT Receive Synchronization Event to DMA 8.3.2.1

XEVT Transmit Synchronization Event to DMA 8.3.2.2
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8.2.1 Serial Port Configuration

The serial port is configured via the 32-bit Serial Port Control Register (SPCR)
and Pin Control Register (PCR) as shown in Figure 8–2 and Figure 8–3. The
SPCR and PCR contain McBSP status information and also bits that can be
configured for desired operation. The operation of each bit-field will be discussed

in the section listed in the bit-field description in Table 8–4 and Table 8–5.

Figure 8–2. Serial Port Control Register (SPCR)
31                                                      24 23 22 21         20 19 18 17 16

reserved† FRST GRST XINTM XSYNCERR‡ XEMPTY XRDY XRST

R, +0 RW, +0 RW, +0 RW, +0 RW, +0 R, +0 R, +0 RW, +0

15 14     13 12     10 9          8 7 6 5          4 3 2 1 0

DLB RJUST CLKSTP reserved reserved reserved RINTM RSYNCERR RFULL RRDY RRST

RW,+0 RW, +0 RW,+0 R, +0 R, +0 R, +0 RW, +0 RW, +0 R, +0 R, +0 RW, +0§

† This and all reserved bit-fields have no storage associated with them. However, they are always read as 0.
‡ Caution : Writing a ‘1’ to this bit will set the error condition. Thus, it is mainly used for testing purposes or if this operation is desired.
§ R +0 means read only, reset value is zero. RW, +0 indicates read and write allowed, reset value is zero.
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Table 8–4. Serial Port Control Register (SPCR) Bit-Field Description 

Name Function Section

FRST Frame Sync Generator Reset

FRST = 0, The frame sync generation logic is reset. Frame sync signal is not
generated by the sample rate generator.

FRST = 1, Frame sync signal is generated after (FPER + 1) number of CLKG
clocks. All frame counters are loaded (FPER, FWID) with their programmed
values.

GRST Sample Rate Generator Reset

GRST = 0, Sample rate generator is reset.

GRST = 1, Sample rate generator is pulled out of reset; CLKG is driven as per
programmed values in Sample Rate Generator Register (SRGR).

8.5.1.2

RINTM
XINTM

Receive/Transmit Interrupt mode

(R/X)INTM = 00b, (R/X)INT driven by (R/X)RDY

(R/X)INTM = 01b, (R/X)INT generated by end-of-block or end-of-frame in multi-
channel operation

(R/X)INTM = 10b, (R/X)INT generated by a new frame synchronization

(R/X)INTM = 11b, (R/X)INT generated by (R/X)SYNCERR

8.3.3

RSYNCERR
XSYNCERR

Receive/Transmit Synchronization Error

(R/X)SYNCERR = 0, no frame synchronization error

(R/X)SYNCERR = 1, frame synchronization error detected by McBSP.

8.3.7.2
8.3.7.5

XEMPTY Transmit Shift Register (XSR) Empty

XEMPTY = 0, XSR is empty

XEMPTY = 1, XSR is not  empty

8.3.7.4

RFULL Receive Shift Register (RSR) Full error condition

RFULL = 0, Receiver is not in overrun condition

RFULL = 1, DRR is not read, RBR is full, and RSR is also full with new word.

8.3.7.1

RRDY

XRDY

Receiver/Transmitter Ready

(R/X)RDY = 0, receiver/transmitter is not ready.

(R/X)RDY = 1, receiver is ready with data to be read from DRR or transmitter
is ready with data in DXR.

8.3.2

RRST
XRST

Receiver/transmitter reset. This resets and enables the receiver/transmitter.

(R/X)RST = 0, The serial port receiver/transmitter is disabled and in reset state.

(R/X)RST = 1, The serial port receiver/transmitter is enabled.

8.3.1
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Table 8–4. Serial Port Control Register (SPCR) Bit-Field Description (Continued)

Name SectionFunction

DLB Digital Loop Back Mode

DLB = 0, Digital loop back mode disabled

DLB = 1, Digital loop back mode enabled

8.5.2.5
8.5.2.6
8.5.3.2

RJUST Receive Sign-Extension and Justification Mode

RJUST = 00b, right-justify and zero-fill MSBs in DRR

RJUST = 01b, right-justify and sign-extend MSBs in DRR

RJUST = 10b, left-justify and zero-fill LSBs in DRR

RJUST = 11b, reserved

8.3.8

CLKSTP Clock Stop Mode

CLKSTP = 0Xb, Clock Stop Mode Disabled. Normal clocking enabled for non-SPI
mode. Various SPI modes (in conjunction with CLKXP in PCR, CLKRP = X) when:

CLKSTP = 10b and CLKXP = 0, Clock starts with rising edge without delay

CLKSTP = 10b and CLKXP = 1, Clock starts with falling edge without delay

CLKSTP = 11b and CLKXP = 0, Clock starts with rising edge with delay

CLKSTP = 11b and CLKXP = 1, Clock starts with falling edge with delay

8.7

In addition to PCR being used to configure the McBSP pins as inputs or outputs
during normal serial port operation, it is used to configure the serial port pins
as general purpose inputs or outputs during receiver and/or transmitter reset.

This is described in Section 8.8.

Figure 8–3. Pin Control Register (PCR)
31                                                                                                                                                                                                                                                                16

reserved

R, +0

15  14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

resv XIOEN RIOEN FSXM FSRM CLKXM CLKRM resv CLKS_STAT DX_STAT DR_STAT FSXP FSRP CLKXP CLKRP

R,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW, +0 R,+0 RW,+0 RW,+0 R,+0 RW,+0 RW,+0 RW,+0 RW,+0
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Table 8–5. Pin Control Register (PCR) Bit-Field Description 

Name Function Section

XIOEN
RIOEN

Transmit/Receive General Purpose I/O Mode ONLY when (R/X)RST = 0 in SPCR

(R/X)IOEN = 0, DR and CLKS pins are not general purpose inputs; DX pin is
not a general purpose output; FS(R/X), CLK(R/X) are not general purpose I/Os.

(R/X)IOEN = 1, DR and CLKS pins are general purpose inputs; DX pin is a general
purpose output. FS(R/X), CLK(R/X) are general purpose I/Os. These serial port
pins do not perform serial port operation. The CLKS pin is affected by a combination
of RST and IOEN signals of the receiver and transmitter.

8.8

FSXM Transmit Frame Synchronization Mode

FSXM = 0, Frame synchronization signal derived from an external source

FSXM = 1, Frame synchronization is determined by the Sample Rate Generator
frame synchronization mode bit FSGM in the SRGR.

8.5.3.3
and 
8.8

FSRM Receive Frame Synchronization Mode

FSRM = 0, Frame synchronization pulses generated by an external device.
FSR is an input pin

FSRM = 1, Frame synchronization generated internally by sample rate generator.
FSR is an output pin except when GSYNC = 1 (subsection 8.5.1.1) in SRGR.

8.5.3.2
and 
8.8

CLKRM Receiver Clock Mode

Case 1: Digital Loop Back Mode not set (DLB = 0) in SPCR

CLKRM = 0, Receive clock (CLKR) is an input driven by an external clock.

CLKRM = 1, CLKR is an output pin and is driven by the internal sample rate
generator.

Case 2: Digital Loop Back Mode set (DLB = 1) in SPCR

CLKRM = 0, Receive clock (not the CLKR pin) is driven by transmit clock
(CLKX) which is based on CLKXM bit in PCR. CLKR pin is in high impedance.

CLKRM = 1, CLKR is an output pin and is driven by the transmit clock. The
transmit clock is derived based on CLKXM bit in the PCR.

8.5.2.6  
and 
8.8
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Table 8–5. Pin Control Register (PCR) Bit-Field Description (Continued)

Name SectionFunction

CLKXM Transmitter Clock Mode.

CLKXM = 0, Receiver/Transmitter clock is driven by an external clock with
CLK(R/X) as an input pin.

CLKXM = 1, CLK(R/X) is an output pin and is driven by the internal sample rate
generator.

During SPI mode (CLKSTP in SPCR is a non-zero value):

CLKXM = 0, McBSP is a slave and (CLKX) is driven by the SPI master in the
system. CLKR is internally driven by CLKX.

CLKXM = 1, McBSP is a master and generates the transmitter clock (CLKX)
to drive its receiver clock (CLKR) and the shift clock of the SPI-compliant
slaves in the system.

8.5.2.7
and 
8.8

8.7

CLKS_ STAT CLKS pin status. Reflects value on CLKS pin when selected as a general purpose
input.

8.8

DX_STAT DX pin status. Reflects value driven on to DX pin when selected as a general
purpose output.

8.8

DR_STAT DR pin status. Reflects value on DR pin when selected as a general purpose
input.

8.8

FSXP
FSRP

Receive/Transmit Frame Synchronization Polarity

FS(R/X)P = 0, Frame synchronization pulse FS(R/X) is active high

FS(R/X)P = 1, Frame synchronization pulse FS(R/X) is active low

8.3.4.1
and 
8.8

CLKXP Transmit Clock Polarity

CLKXP = 0, Transmit data driven on rising edge of CLKX

CLKXP = 1, Transmit data driven on falling edge of CLKX

8.3.4.1
and 
8.8

CLKRP Receive Clock Polarity

CLKRP = 0, Receive data sampled on falling edge of CLKR

CLKRP = 1, Receive data sampled on rising edge of CLKR

8.3.4.1
and 
8.8
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8.2.2 Receive and Transmit Control Registers: RCR and XCR

The Receive and Transmit Control Registers (RCR and XCR) shown in
Figure 8–4 and Figure 8–5, configure various parameters of receive and
transmit operation respectively. The operation of each bit-field will be

discussed in the section listed in the bit-field description in Table 8–6.

Figure 8–4. Receive Control Register (RCR)

31 30                     24 23                        21 20     19 18 17 16

RPHASE RFRLEN2 RWDLEN2 RCOMPAND RFIG RDATDLY

RW, +0 RW, +0 RW, +0 RW, +0 RW, +0 RW, +0

15 14                       8 7                            5 4                                                                                               0

reserved RFRLEN1 RWDLEN1 reserved

R, +0 RW, +0 RW, +0 R, +0

Figure 8–5. Transmit Control Register (XCR)

31 30                     24 23                        21 20                     19 18 17                             16

XPHASE XFRLEN2 XWDLEN2 XCOMPAND XFIG XDATDLY

RW, +0 RW, +0 RW, +0 RW, +0 RW, +0 RW, +0

15 14                       8 7                            5 4                                                                                               0

reserved XFRLEN1 XWDLEN1 reserved

R, +0 RW, +0 RW, +0 R, +0
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Table 8–6. Receive/Transmit Control Register (RCR/XCR) Bit-Field Description 

Name Function Section

(R/X)PHASE Receive/Transmit Phases

(R/X)PHASE = 0, single phase frame

(R/X)PHASE = 1, dual phase frame

8.3.4.2

(R/X)FRLEN(1/2) Receive/Transmit Frame Length 1/2

(R/X)FRLEN(1/2) = 000 0000b, 1 word per frame

(R/X)FRLEN(1/2) = 000 0001b, 2 words per frame

                      |

                      |

(R/X)FRLEN(1/2) = 111 1111b, 128 words per frame

8.3.4.3

(R/X)WDLEN(1/2) Receive/Transmit Word Length 1/2

(R/X)WDLEN(1/2) = 000b, 8 bits

(R/X)WDLEN(1/2) = 001b, 12 bits

(R/X)WDLEN(1/2) = 010b, 16 bits

(R/X)WDLEN(1/2) = 011b, 20 bits

(R/X)WDLEN(1/2) = 100b, 24 bits

(R/X)WDLEN(1/2) = 101b, 32 bits

(R/X)WDLEN(1/2) = 11Xb, reserved

8.3.4.4

RCOMPAND
XCOMPAND

Receive/Transmit Companding Mode. Modes other than 00b are only
enabled when the appropriate (R/X)WDLEN is 000b, indicating 8-bit
data.

(R/X)COMPAND = 00b, no companding, data transfer starts with MSB
first.

(R/X)COMPAND = 01b, no companding, 8-bit data, transfer starts with
LSB first.

(R/X)COMPAND = 10b, compand using µ-law for receive/transmit data.

(R/X)COMPAND = 11b, compand using A-law for receive/transmit data.

NO TAG
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Table 8–6. Receive/Transmit Control Register (RCR/XCR) Bit-Field Description (Continued)

Name SectionFunction

RFIG
XFIG

Receive/Transmit Frame Ignore

(R/X)FIG = 0, Receive/Transmit Frame synchronization pulses after
the first restarts the transfer.

(R/X)FIG = 1, Receive/Transmit Frame synchronization pulses after
the first are ignored.

8.3.6.2

RDATDLY
XDATDLY

Receive/Transmit data delay

(R/X)DATDLY = 00b, 0-bit data delay

(R/X)DATDLY = 01b, 1-bit data delay

(R/X)DATDLY = 10b, 2-bit data delay

(R/X)DATDLY = 11b, reserved 

8.3.4.6
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8.3 Data Transmission and Reception Flow

As shown in Figure 8–1, the receive operation is triple-buffered and transmit
operation is double buffered. Receive data arrives on DR and is shifted into the
RSR. Once a full word (8-, 12-, 16-, 20-, 24-, or 32-bit) is received, the RSR
is copied to the Receive Buffer Register, RBR, only if RBR is not full. RBR is

then copied to DRR unless DRR is not read by the CPU or DMA.

Transmit data is written by the CPU or DMA to the DXR. If there is no data in
the XSR, the value in the DXR is copied to the XSR. Otherwise, the DXR is
copied to the XSR when the last bit of data is shifted out on DX. After transmit

frame synchronization, the XSR begins shifting out the transmit data on DX.

8.3.1 Resetting the Serial Port: (R/X)RST , GRST, and RESET

The serial port can be reset in the following two ways:

1) Device reset (RESET = 0) places the receiver, transmitter and the sample
rate generator in reset. When the device reset is removed (RESET = 1),
FRST = GRST = RRST = XRST = 0, keeping the entire serial port in the
reset state.

2) The serial port transmitter and receiver can be independently reset by the
XRST and RRST bits in the Serial Port Control register. The sample rate
generator is reset by the GRST bit in the SPCR.

Table 8–7 shows the state of McBSP pins when the serial port is reset due to
device reset and due to receiver/transmitter reset 
(XRST = RRST = FRST =  0).
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Table 8–7. Reset State of McBSP Pins

McBSP
Pins Direction

Device Reset
(RESET = 0) McBSP Reset

Receiver Reset (RRST  = 0 and FRST = 0)

DR I Known State† Known State†

CLKR I/O/Z Known State† Known State if Input†; CLKRP if Output†

FSR I/O/Z Known State† Known State if Input†; FSRP(inactive state) if Output†

CLKS I Known State† Known State if the transmitter is also reset or if the transmitter
is configured with CLKSM = 1 in SRGR. See subsection
8.5.1.1†

Transmitter Reset (XRST  = 0 and FRST = 0)

DX O Hi-Z Hi-Z

CLKX I/O/Z Known State† Known State if Input; CLKX if Output†

FSX I/O/Z Known State† Known State if Input; FSXP(inactive state) if Output†

CLKS I Known State† Known State if the receiver is also reset or if the receiver is
configured with CLKSM = 1 in SRGR. See subsection 8.5.1.1†

† All input pins should be pulled up with individual resistors.

� Device reset or McBSP reset: When the McBSP is reset in any of the
above two ways, the state machine is reset to its initial state. This initial
state includes resetting all counters and status bits. The receive status bits
include RFULL, RRDY, and RSYNCERR. The transmit status bits include
XEMPTY, XRDY, and XSYNCERR.

� Device reset:  When McBSP is reset due to device reset (device pin
RESET = 0), the entire serial port including the transmitter, receiver, and
the sample rate generator is reset. All input only pins and three-state pins
should be in a known state†. The output only pin, DX, is in high impedance
state. Since the sample rate generator is also reset (GRST = 0), the sam-
ple rate generator clock, CLKG, is driven by a divide-by-2 CPU clock,
whereas the frame sync signal, FSG, is not generated. See subsection
8.5.1.2 for more information on sample rate generator reset. When the
device is pulled out of reset, the serial port remains in reset condition
((R/X)RST = FRST = 0), and in this condition the DR and DX pins may be
used as general purpose I/O as described in subsection 8.8.
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� McBSP reset:  When the receiver and transmitter reset bits, RRST and
XRST, are written with a zero value, the respective portions of the McBSP
are reset. Activity in the corresponding section of the serial port stops. The
FRST bit in SPCR is set to zero which resets the frame sync generation
counters in the sample generator. All input only pins such as DR, and CLKS,
and all other pins that are configured as inputs are in a known state. FS(R/X)
is driven to its inactive state (same as its polarity bit FS(R/X)P) if they are
outputs. CLKR and CLKX are driven by the sample rate generator. If
CLK(R/X) are programmed as outputs, they are driven by CLKG. Lastly, the
DX pin will be in high impedance state when the transmitter is reset. During
normal operation (out of device reset), the sample rate generator can be
reset by writing a zero to GRST. GRST should be low only when neither the
transmitter nor the receiver is using the sample rate generator. In this case,
the internal sample rate generator clock CLKG, and its frame sync signal
(FSG) is driven inactive low. When the sample rate generator is not in reset
state (GRST = 1), the pins FSR and FSX will be in an inactive state when
RRST = 0 and XRST = 0 respectively, even if they are outputs driven by
FSG. This ensures that when only one portion of the McBSP is in reset, the
other portion can continue operation when FRST = 1 and  frame sync is
driven by FSG. See subsection 8.5.1.2 for more information on sample
rate generator reset.

� Sample Rate Generator Reset:  As mentioned earlier, the sample rate
generator is reset when the device is reset or when its reset bit, GRST, is
written with a value of zero. In the case of device reset, the CLKG signal
is driven by a divide-by-2 CPU clock and FSG is driven inactive low. If it
is desired to reset the sample rate generator when neither the transmitter
or receiver is fed by the CLKG and FSG, GRST in the SRGR can be pro-
grammed to zero. Here, CLKG and FSG are driven inactive low. When
GRST = 1, CLKG comes up running as programmed in the SRGR. Later
if FRST = 1, FSG is driven active high after the programmed frame period
(FPER+1) number of CLKG cycles have elapsed.

After device reset is complete (RESET = 1), the serial port initialization proce-
dure is as follows:

1) Set XRST = RRST = FRST = 0 in SPCR. If coming out of device reset, this
step is not required.

2) Program only the McBSP configuration registers (and not the data regis-
ters) listed in Table 8–2 as required when the serial port is in reset state
(XRST = RRST = FRST = 0).

3) Wait two bit clocks. This is to ensure proper synchronization internally.
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4) Set XRST = RRST = 1 to enable the serial port. Note that the value written
to the SPCR at this time should have only the reset bits changed to 1 and
the remaining bit-fields should have the same value as in Step 2 above.

5) Set up data acquisition as desired.

6) Set FRST = 1. Now the McBSP is ready to transmit and/or receive, if it is
the frame master.

Alternatively, on either write (Steps 1 and 4 above), the transmitter and receiver
may be placed in or taken out of reset individually by only modifying the desired
bit. Note that the necessary duration of the active-low period of XRST or RRST
is at least two bit clocks (CLKR/CLKX) wide. The above procedure for reset init-
ialization can be applied in general when the receiver or transmitter has to be
reset during its normal operation and also when the sample rate generator is
not used for either operation. The sample rate generator reset procedure is

explained in subsection 8.5.1.2.

Note:

(a) The appropriate bit-fields in the serial port configuration registers SPCR,
PCR, RCR, XCR, and SRGR should only be modified by the user when the
affected portion of the serial port is in reset.

(b) Data Transmit Register, DXR, should be loaded by the CPU or DMA only
when the transmitter is not in reset (XRST = 1). Exception to this rule is during
Digital Loop Back Mode which is described in subsection 8.4.1

(c) The multichannel selection registers MCR, XCER, and RCER can be
modified at any time as long as they are not being used by the current block
in the multichannel selection; see subsection 8.6.3.2 for further details in this
case.

8.3.2 Determining Ready Status

RRDY and XRDY indicate the ready state of the McBSP receiver and transmit-
ter, respectively. Writes and reads of the serial port may be synchronized by
polling RRDY and XRDY, or by using the events to DMA (REVT and XEVT)
or interrupts to CPU (RINT and XINT) that they generate. Note that reading the

DRR and writing to DXR affects RRDY and XRDY.

8.3.2.1 Receive Ready Status: REVT, RINT, and RRDY

RRDY = 1 indicates that the RBR contents have been copied to the DRR and
that the data can be read by either the CPU or DMA. Once that data has been
read by either the CPU or DMA, RRDY is cleared to 0. Also, at device reset
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or serial port receiver reset (RRST = 0), the RRDY is cleared to 0 to indicate
no data has yet been received and loaded into DRR. RRDY directly drives the
McBSP receive event to the DMA (REVT). Also, the McBSP receive interrupt
(RINT) to the CPU may be driven by RRDY if RINTM = 00b (default value) in

the SPCR.

8.3.2.2 Transmit Ready Status: XEVT, XINT, and XRDY

XRDY = 1 indicates that the DXR contents have been copied to XSR and that
DXR is ready to be loaded with a new data word. When the transmitter transi-
tions from reset to non-reset (XRST transitions from 0 to 1), the XRDY also
transitions from 0 to 1 indicating that the DXR is ready for new data. Once new
data is loaded by the CPU or DMA, XRDY is cleared to 0. However, once this
data is copied from the DXR to the XSR, XRDY transitions again from 0 to 1.
Now again, the CPU or DMA can write to DXR although XSR has not been
shifted out on DX as yet. XRDY directly drives the transmit synchronization
event to the DMA (XEVT). Also, the transmit interrupt (XINT) to the CPU may

also be driven by XRDY if XINTM = 00b (default value) in the SPCR.

8.3.3 CPU Interrupts: (R/X)INT

The receive interrupt (RINT) and transmit interrupt (XINT) signals the CPU of
changes to the serial port status. Four options exist for configuring these inter-
rupts. These options are set by the receive/transmit interrupt mode bit-field,

(R/X)INTM, in the SPCR.

1) (R/X)INTM = 00b. Interrupt on every serial word by tracking the (R/X)RDY
bits in the SPCR. Sections 8.3.2.1 and 8.3.2.2 describe the RRDY and
XRDY bits.

2) (R/X)INTM = 01b. Interrupt after every 16-channel block boundary (in multi-
channel selection mode) has been crossed within a frame. In any other serial
transfer case, this setting is not applicable and therefore no interrupts are
generated. See subsection 8.6.3.3 for details.

3) (R/X)INTM = 10b. Interrupt on detection of frame synchronization pulses.
This generates an interrupt even when the transmitter/receiver is in reset.
This is done by synchronizing the incoming frame sync pulse to the CPU
clock and sending it to the CPU via (R/X)INT. This is described in subsec-
tion 8.5.3.4.

4) (R/X)INTM = 11b. Interrupt on frame synchronization error. Note that if any
of the other interrupt modes are selected, (R/X)SYNCERR may be read
to detect this condition. See subsections 8.3.7.2 and 8.3.7.5 for more de-
tails on synchronization error.
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The last three options listed (2–4) are applicable as interrupts to the CPU, and
not as events to the DMA.

8.3.4 Frame and Clock Configuration

Figure 8–6 shows typical operation of the McBSP clock and frame sync sig-
nals. Serial clocks CLKR, and CLKX define the boundaries between bits for
receive and transmit respectively. Similarly, frame sync signals FSR and FSX
define the beginning of a serial word. The McBSP allows configuration of vari-
ous parameters for data frame synchronization. This can be done indepen-

dently for receive and transmit which includes the following:

� Polarities of FSR, FSX, CLKX, and CLKR may be independently
programmed.

� A choice of single or dual-phase frames.

� For each phase, the number of words per frame is programmable.

� For each phase, the number of bits per word is programmable.

� Subsequent frame synchronization may restart the serial data stream or
be ignored.

� The data delay from frame synchronization to first data bit can be 0-, 1-,
or 2-bit delays.

� Right or left-justification as well as sign-extension or zero-filling can be
chosen for receive data.

Figure 8–6. Frame and Clock Operation
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8.3.4.1 Frame and Clock Operation

Receive and transmit frame sync pulses can be generated either internally by
the sample rate generator (See subsection 8.5.1) or driven by an external
source. This can be achieved by programming the mode bit, FS(R/X)M, in the
PCR. FSR is also affected by the GSYNC bit in the SRGR (See subsection
8.5.3.2 for details). Similarly, receive and transmit clocks can be selected to

be inputs or outputs by programming the mode bit, CLK(R/X)M, in the PCR.
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When FSR and FSX are inputs (FSXM = FSRM = 0, external frame sync
pulses), the McBSP detects them on the internal falling edge of clock, CLKR_int,
and CLKX_int respectively (See Figure 8–35). The receive data arriving at DR
pin is also sampled on the falling edge of CLKR_int. Note that these internal
clock signals are either derived from external source via CLK(R/X) pins or driven

by the sample rate generator clock (CLKG) internal to the McBSP.

When FSR and FSX are outputs driven by the sample rate generator, they are
generated (transition to their active state) on the rising edge of internal clock,
CLK(R/X)_int. Similarly data on DX pin is output on the rising edge of

CLKX_int. See subsection 8.3.4.6 for further details.

FSRP, FSXP, CLKRP, and CLKXP configure the polarities of FSR, FSX, CLKR,
and CLKX signals as shown in Table 8–5. All frame sync signals (FSR_int,
FSX_int) internal to the serial port are active high. If the serial port is configured
for external frame synchronization (FSR/FSX are inputs to McBSP), and FSRP
= FSXP = 1, the external active low frame sync signals are inverted before being
sent to the receiver (FSR_int) and transmitter (FSX_int). Similarly, if internal
synchronization (FSR/FSX are output pins and GSYNC = 0) is selected, the inter-
nal active high sync signals are inverted if the polarity bit FS(R/X)P = 1, before
being sent to the FS(R/X) pin. Figure 8–35 shows this inversion using XOR gates.

On the transmit side, the transmit clock polarity bit, CLKXP, sets the edge used
to shift and clock out transmit data. Note that data is always transmitted on the
rising edge of CLKX_int. If CLKXP = 1, and external clocking is selected
(CLKXM = 0 and CLKX is an input), the external falling-edge triggered input
clock on CLKX is inverted to a rising-edge triggered clock before being sent
to the transmitter. If CLKXP = 1, and internal clocking selected (CLKXM = 1 and
CLKX is an output pin), the internal (rising-edge triggered) clock, CLKX_int,

is inverted before being sent out on the CLKX pin.
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Similarly, on the transmitter side, the configuration is such that the receiver can
reliably sample data that is clocked with a rising edge clock (by the transmitter).
The receive clock polarity bit, CLKRP, sets the edge used to sample received
data. Note that the receive data is always sampled on the falling edge of
CLKR_int. Therefore, if CLKRP = 1 and external clocking is selected (CLKRM
= 0 and CLKR is an input pin), the external rising edge triggered input clock
on CLKR is inverted to a falling-edge before being sent to the receiver. If
CLKRP = 1, and internal clocking is selected (CLKRM = 1), the internal falling-
edge triggered clock is inverted to a rising-edge before being sent out on the

CLKR pin.

Note that in a system where the same clock (internal or external) is used to clock
the receiver and transmitter, CLKRP = CLKXP. The receiver uses the opposite
edge as the transmitter to guarantee valid setup and hold of data around this
edge. Figure 8–7 shows how data clocked by an external serial device using a
rising edge may be sampled by the McBSP receiver with the falling edge of the

same clock.

Figure 8–7. Receive Data Clocking
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8.3.4.2 Frame Synchronization Phases

Frame synchronization is used to indicate the beginning of a transfer on the
McBSP. The data stream following frame synchronization may have two
phases, phase 1 and phase 2. The number of phases in a data stream can be
selected by the phase bit, (R/X)PHASE, in the RCR and XCR. The number of
words per frame and bits per word can be independently selected for each
phase via (R/X)FRLEN(1/2) and (R/X)WDLEN(1/2) respectively. Figure 8–8
shows an example of a frame where the first phase consists of 2 words of 12
bits each followed by a second phase of 3 words of 8 bits each. Note that the
entire bit stream in the frame is contiguous. There are no gaps either between
words or phases. Table 8–8 shows the bit-fields in the receive/transmit control
register (RCR/XCR) that control the number of words/frame and bits/word for
each phase for both the receiver and transmitter. The maximum number of
words per frame is 128 for a single phase frame and 256 for a dual phase

frame. The number of bits per word can be 8-, 12-, 16-, 20-, 24-, or 32-bits.
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Figure 8–8. Dual Phase Frame Example
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Table 8–8. RCR/XCR Bit-Fields Controlling Words/Frame and Bits/Word

Serial Port
RCR/XCR Bit-field Control

Serial  Port
McBSP0/1 Frame Phase Words/Frame Bits/Word

Receive 1 RFRLEN1 RWDLEN1

Receive 2 RFRLEN2 RWDLEN2

Transmit 1 XFRLEN1 XWDLEN1

Transmit 2 XFRLEN2 XWDLEN2

8.3.4.3 Frame Length: (R/X)FRLEN(1/2)

Frame length can be defined as the number of serial words (8-, 12-, 16-, 20-, 24-,
or 32-bit) transferred per frame. The length corresponds to the number of words
or logical time slots or channels per frame synchronization signal. The 7-bit
(R/X)FRLEN(1/2) field in the (R/X)CR supports up to 128 words per frame as
shown in Table 8–9. Note that (R/X)PHASE = 0 represents a single phase data
frame and a (R/X)PHASE = 1 selects a dual phase for the data stream. Note that
for a single phase frame, FRLEN2 is a don’t care. The user is cautioned to pro-
gram the frame length fields with (w minus 1), where w represents the number
of words per frame. For the example in Figure 8–8, (R/X)FRLEN1 = 1 or

0000001b and (R/X)FRLEN2 = 2 or 0000010b.

Table 8–9. McBSP Receive/Transmit Frame Length 1/2 Configuration

(R/X)PHASE (R/X)FRLEN1 (R/X)FRLEN2 Frame Length

0 0 ≤ n ≤ 127 X Single Phase Frame; (n+1) words per frame

1 0 ≤ n ≤ 127 0 ≤ m ≤ 127 Dual Phase Frame; (n+1) plus (m+1) words per frame
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8.3.4.4 Word Length: (R/X)WDLEN(1/2)

The (R/X)WDLEN(1/2) fields in the receive/transmit control register determine
the word length in bits per word for the receiver and transmitter for each phase
of the frame as shown in Table 8–8. Table 8–10 shows how the value of these
fields selects particular word lengths in bits. For the example in Figure 8–8,
(R/X)WDLEN1 = 001b, and (R/X)WDLEN2 = 000b. Note that if (R/X)PHASE =
0 indicating a single phase frame, R/X)WDLEN2 is not used by the McBSP and

its value is a don’t care.

Table 8–10. McBSP Receive/Transmit Word Length Configuration

(R/X)WDLEN(1/2)

McBSP
Word Length

(Bits)

000 8

001 12

010 16

011 20

100 24

101 32

110 reserved

111 reserved

8.3.4.5 Data Packing using Frame Length and Word Length

The frame length and word length can be manipulated to effectively pack data.
For example, consider a situation where four 8-bit words are transferred in a

single phase frame as shown in Figure 8–9. In this case:

� (R/X)FRLEN1 = 0000011b, 4-word frame
� (R/X)PHASE = 0, single phase frame
� (R/X)FRLEN2 = X
� (R/X)WDLEN1 = 000b, 8-bit words

In this case, four 8-bit data elements are transferred to and from the McBSP by
the CPU or DMA. Thus, four reads of DRR and four writes of DXR are necessary

for each frame.
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Figure 8–9. Single Phase Frame of Four 8-Bit Words
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RBR to DRR copyRBR to DRR copy RBR to DRR copyRBR to DRR copy

The example in Figure 8–9 can also be viewed as a data stream of a single
phase frame consisting of one 32-bit data word as shown in Figure 8–10. In

this case:

� (R/X)FRLEN1 = 0b, 1-word frame
� (R/X)PHASE = 0, single phase frame
� (R/X)FRLEN2 = X
� (R/X)WDLEN1 = 101b, 32-bit words.

In this case, one 32-bit data word is transferred to and from the McBSP by the
CPU or DMA. Thus, one read of DRR and one write of DXR is necessary for
each frame. This results in only one-fourth the number of transfers compared
to the previous case. This manipulation reduces the percentage of bus time

required for serial port data movement.



Data Transmission and Reception Flow

 8-28

Figure 8–10. Single Phase frame of One 32-Bit Word
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8.3.4.6 Data Delay: (R/X)DATDLY

The start of a frame is defined by the first clock cycle in which frame synchro-
nization is found to be active. The beginning of actual data reception or trans-
mission with respect to the start of the frame can be delayed if required. This
delay is called data delay. RDATDLY and XDATDLY specify the data delay for
reception and transmission, respectively. The range of programmable data
delay is zero to two bit-clocks ((R/X)DATDLY = 00b –10b) as described in
Table 8–6 and shown in Figure 8–11. Typically 1-bit delay is selected as data

often follows a one-cycle active frame sync pulse.

Figure 8–11.Data Delay
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Normally, frame sync pulse is detected or sampled with respect to an edge of
serial clock CLK(R/X)_int (See subsection 8.3.4.1). Thus, on the following cycle
or later (depending on data delay value), data may be received or transmitted.
However, in the case of zero-bit data delay, the data must be ready for reception
and/or transmission on the same serial clock cycle. For reception, this problem
is solved as receive data is sampled on the first falling edge of CLKR_int where
an active high FSR_int is detected. However, data transmission must begin on
the rising edge of CLKX_int clock that generated the frame synchronization.
Therefore, the first data bit is assumed to be present in the XSR and thus DX.
The transmitter then asynchronously detects the frame synchronization,
(FSX_int), going active high, and immediately starts driving the first bit to be

transmitted on the DX pin.

Another common mode is a data delay of two. This configuration allows the serial
port to interface to different types of T1 framing devices where the data stream
is preceded by a framing bit. During reception of such a stream with a data delay
of two bits (framing bit appears after one-bit delay and data appears after 2-bit
delay), the serial port essentially discards the framing bit from the data stream as
shown in Figure 8–12. In transmission, by delaying the first transfer bit, the serial
port essentially inserts a blank period (high impedance period) where the framing
bit should be. Here, it is expected that the framing device inserts its own framing

bit or that the framing bit is generated by another device.

Figure 8–12. Two-Bit Data Delay Used to Discard Framing Bit
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8.3.4.7 Multi-Phase Frame Example: AC97

Figure 8–13 shows an example of the Audio Codec ‘97 (AC97) standard which
uses the dual phase frame feature. The first phase consists of a single 16-bit
word. The second phase consists of 12 20-bit words. The phases are configured

as follows:

� (R/X)PHASE = 1b, dual phase frame
� (R/X)FRLEN1 = 0b, 1 word per frame in phase 1
� (R/X)WDLEN1 = 010b, 16-bits per word in phase 1
� (R/X)FRLEN2 = 0001011b, 12 words per frame in phase 2
� (R/X)WDLEN2 = 011b, 20-bits per word in phase 2

� CLK(R/X)P = 0, receive data sampled on falling edge of CLKR_int; transmit
data clocked on rising edge of CLKX_int.

� FS(R/X)P = 0, active high frame sync signals
� (R/X)DATDLY = 01b, data delay of one bit-clock

Figure 8–13. AC97 Dual Phase Frame Format�
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� PxWy denotes Phase x and Word y

Figure 8–13 shows the timing of AC97 near frame synchronization. First notice
that the frame sync pulse itself overlaps the first word. In McBSP operation, the
inactive to active transition of the frame synchronization signal actually indicates
frame synchronization. For this reason, frame synchronization may be high an
arbitrary number of bit clocks. Only after the frame synchronization is recog-
nized to have gone inactive and then active again is the next frame synchroniza-

tion recognized.

Also notice in Figure 8–14, there is one-bit data delay. Notice that regardless of
the data delay, transmission can occur without gaps. The last bit of the previous
(last) word in phase 2 is immediately followed by the first data bit of the first word

in phase 1 of the next data frame.
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Figure 8–14. AC97 Example Bit Timing Near Frame Synchronization�
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� PxWyBz denotes Phase x, Word y, Bit z

8.3.5 McBSP Standard Operation

During a serial transfer, there are typically periods of serial port inactivity
between packets or transfers. The receive and transmit frame synchronization
pulse occurs for every serial transfer. When the McBSP is not in reset state and
has been configured for the desired operation, a serial transfer can be initiated
by programming (R/X)PHASE = 0 for a single phase frame with required number
of words programmed in (R/X)FRLEN1. The number of words can range from 1
to 128 ((R/X)FRLEN1 = 0x0 to 0x7F). The required serial word length is set in the
(R/X)WDLEN1 field in the (R/X)CR. If dual phase is required for the transfer,
RPHASE = 1, each (R/X)FRLEN(1/2) can be set to any value between 0x0 to

0x7F which represents 1 to 128 words.

Figure 8–15 shows an example of a single phase data frame comprising one
8-bit word. Since the transfer is configured for one data bit delay, the data on
the DX and DR pins are available one bit clock after FS(R/X) goes active. This

figure as well as all others in this section make the following assumptions:

� (R/X)PHASE = 0, single phase frame

� (R/X)FRLEN1 = 0b, 1 word per frame

� (R/X)WDLEN1 = 000b, 8-bit word

� (R/X)FRLEN2 = (R/X)WDLEN2 = X, don’t care

� CLK(R/X)P = 0, receive data clocked on falling edge; transmit data
clocked on rising edge

� FS(R/X)P = 0, active high frame sync signals

� (R/X)DATDLY = 01b, one-bit data delay
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Figure 8–15. McBSP Standard Operation
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8.3.5.1 Receive Operation

Figure 8–16 shows an example of serial reception. Once receive frame synchro-
nization (FSR_int) transitions to its active state, it is detected on the first falling
edge of CLKR_int of the receiver. The data on the DR pin is then shifted into the
receive shift register (RSR) after the appropriate data delay as set by RDATDLY.
The contents of RSR is copied to RBR at the end of every word on the rising edge
of clock provided RBR is not full with the previous data. After this, an RBR-to-DRR
copy activates the RRDY status bit to 1 on the following falling edge of CLKR_int.
This indicates that the receive data register (DRR) is ready with the data to be
read by the CPU or DMA. RRDY is deactivated when the DRR is read by the CPU

or DMA.

Figure 8–16. Receive Operation
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8.3.5.2 Transmit Operation

Once transmit frame synchronization occurs, the value in the transmit shift
register, XSR, is shifted out and driven on the DX pin after the appropriate data
delay as set by XDATDLY. XRDY is activated on every DXR-to-XSR copy on
the following falling edge of CLKX_int, indicating that the data transmit register
(DXR) is written with the next data to be transmitted. XRDY is deactivated
when the DXR is written by the CPU or DMA. Figure 8–17 shows an example
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serial transmission. See subsection 8.3.7.4 for transmit operation when trans-
mitter is pulled out of reset (XRST = 1).

Figure 8–17. Transmit Operation
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8.3.5.3 Maximum Packet Frequency

The total number of words in a frame, whether single phase or dual phase, may
be called the serial transfer packet. The packet frequency is determined by the

period between frame synchronization signals:

Packet frequency = Bit-clock Frequency
Number of Bit Clocks Between Frame Sync Signals

The packet frequency may be increased by decreasing the distance between
frame synchronization signals in bit clocks (limited only by the number of bits
per packet). As the packet transmit frequency is increased, the inactivity period
between the data packets for adjacent transfers decreases to zero. The mini-
mum distance between frame synchronization is the number of bits transferred

per packet. This distance also defines the maximum packet frequency:

Maximum Packet frequency = Bit-clock Frequency
Number of Bits Per Frame or Packet

Figure 8–18 shows the McBSP operating at maximum packet frequency. At
maximum packet frequency, the data bits in consecutive packets are trans-
mitted contiguously with no inactivity between bits. If there is a one-bit data
delay as shown, the frame synchronization pulse overlaps the last bit trans-

mitted in the previous packet.
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Figure 8–18. Maximum Packet Frequency Receive
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Effectively, this permits a continuous stream of data, and, thus the frame
synchronization pulses are essentially redundant. Theoretically, then, only an
initial frame synchronization pulse is required to initiate the multi-packet
transfer. The McBSP does support operation of the serial port in this fashion by
ignoring the successive frame sync pulses. Data is clocked in to the receiver or
clocked out of the transmitter on every clock. The frame ignore bit, (R/X)FIG,
in the (R/X)CR can be programmed to ignore the successive frame sync pulses.

This is explained in section 8.3.6.1.

Note:

Note that for (R/X)DATDLY = 0, the first bit of data transmitted is asynchro-
nous to CLKX_int.

8.3.6 Frame Synchronization Ignore

The McBSP can be configured to ignore transmit and receive frame synchro-
nization pulses. The (R/X)FIG bit in the (R/X)CR can be programmed to zero
and not ignore frame sync pulses, or, be set to one and ignore frame sync
pulses. This way the user can use (R/X)FIG bit to either pack data or ignore un-
expected frame sync pulses. Data packing is explained in subsection 8.3.6.1,
and McBSP operation on unexpected frame sync pulses in subsection 8.3.6.2.
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8.3.6.1 Data Packing using Frame Sync Ignore Bits

Subsection 8.3.4.5 describes one method of changing the word length and frame
length to simulate 32-bit serial word transfers, thus requiring much less bus band-
width. This example worked when there were multiple words per frame. Now con-
sider the case of the McBSP operating at maximum packet frequency as shown
in Figure 8–19. Here, each frame only has a single 8-bit word. This stream takes
one read and one write transfer for each 8-bit word. Figure 8–20 shows the
McBSP configured to treat this stream as a continuous stream of 32-bit words.
In this example (R/X)FIG is set to 1 to ignore subsequent frames after the first.
Here, only one read and one write transfer is needed every 32-bits. This configu-

ration effectively reduces the required bus bandwidth to one-fourth.

Figure 8–19. Maximum Packet Frequency Operation with 8-Bit Data
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Figure 8–20. Data Packing at Maximum Packet Frequency with (R/X)FIG = 1
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8.3.6.2 Frame Sync Ignore and Unexpected Frame Sync Pulses

The previous subsection explains how frame ignore bits can be used to pack
data and efficiently use the bus bandwidth. (R/X)FIG bit can also be used to
ignore unexpected frame sync pulses. Unexpected frame sync pulses are
those that occur at a time when they are not expected. Thus, any frame sync
pulse which occurs one or more bit clocks earlier than the programmed data
delay ((R/X)DATDLY) is deemed as unexpected. Setting the frame ignore bits
to one causes the serial port to ignore these unexpected frame sync signals.

In reception, if not ignored (RFIG = 0), an unexpected FSR pulse will discard
the contents of RSR in favor of the new incoming data. Therefore if RFIG = 0,
an unexpected frame synchronization pulse aborts the current data transfer,
sets RSYNCERR in the SPCR to 1, and begins the reception of a new data
word. See subsection 8.3.7.2 for further details. When RFIG = 1, reception

continues, ignoring the unexpected frame sync pulses.

If (R/X)FIG is set to zero, these frame sync pulses are not ignored. In transmis-
sion, if not ignored (XFIG = 0), an unexpected FSX pulse will abort the ongoing
transmission, set the XSYNCERR in the SPCR to 1, and re-initiate transmis-
sion of the current word that was aborted. See subsection 8.3.7.5 for further
details. When XFIG = 1, normal transmission continues with unexpected

frame sync signals ignored.

Figure 8–21. Unexpected Frame Synchronization with (R/X)FIG = 0
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Figure 8–21 shows an example wherein word B is interrupted by an unexpected
frame sync pulse when (R/X)FIG = 0. In the case of reception, the reception of B
is aborted (B is lost), and a new data word (C in this example) is received after the
appropriate data delay. This condition is a receive synchronization error and thus
sets the RSYNCERR field. However, for transmission, the transmission of B is
aborted, and the same data (B) is re-transmitted after the appropriate data delay.
This condition is a transmit synchronization error and thus sets the XSYNCERR
field. Synchronization errors are discussed in subsections 8.3.7.2 and 8.3.7.5. In
contrast, Figure 8–22 shows McBSP operation when unexpected frame synchro-
nization signals are ignored by setting (R/X)FIG = 1. Here, the transfer of word B

is not affected by an unexpected frame synchronization.

Figure 8–22. Unexpected Frame Synchronization with (R/X)FIG = 1
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8.3.7 Serial Port Exception Conditions

There are five serial port events that may constitute a system error:

1) Receive Overrun (RFULL = 1) . This occurs when DRR (with data A) has
not been read since the last RBR-to-DRR transfer, therefore a new word
(data B) in RBR has not been transferred to DRR, and RSR is now full with
another new word (data C) shifted in from DR. Therefore, RFULL indicates
an error condition wherein any new data that may arrive at this time on DR
will replace the contents in RSR, and thus previous word (data C) is lost.
RSR continues to be overwritten as long as new data arrives on the DR
pin and DRR is not read.

2) Unexpected Receive Frame Synchronization (RSYNCERR = 1) . This
can occur during reception when RFIG = 0 and an unexpected frame sync
pulse occurs. An unexpected frame sync pulse is defined as that which
occurs RDATDLY minus 1 or more bit-clocks earlier than the first bit of the
next associated word. This causes the current data reception to abort and
restart. If new data has been copied into the RBR from RSR since the last
RBR-to-DRR copy, this new data in RBR will be lost because no RBR-to-
DRR copy occurs as the reception has been restarted.

3) Transmit Data Overwrite . Here the user overwrites data in the DXR
before it is copied to the XSR. The data previously in the DXR is never
transferred on DX since it never got copied to the XSR.

4) Transmit Empty (XEMPTY  = 0). If a new frame synchronization signal
arrives before new data is loaded into the DXR, the old data in the DXR
will be sent again. This will continue for every new frame sync signal that
arrives on the FSX pin until the DXR is loaded with new data.

5) Unexpected Transmit Frame Synchronization (XSYNCERR = 1) . This
can occur during transmission when XFIG = 0 and an unexpected frame
sync pulse occurs. Again, an unexpected frame sync pulse is defined as
that which occurs XDATDLY minus 1 or more bit-clocks earlier than the
first bit of the next associated word. This causes the current data transmis-
sion to abort and restart the current transfer. If new data has been written
to the DXR since the last DXR-to-XSR copy, the current value in the XSR
will be lost.

These events are described in more detail in the following subsections.
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8.3.7.1 Reception with Overrun: RFULL

RFULL = 1 in the SPCR indicates that the receiver has experienced overrun
and is in an error condition. RFULL is set when:

1) DRR has not been read since the last RBR-to-DRR transfer.
2) RBR is full, and a RBR to DRR copy has not occurred, and
3) RSR is full, and a RSR to RBR transfer has not occurred.

The data arriving on DR is continuously shifted into RSR. Once a complete
word is shifted into RSR, an RSR-to-RBR transfer can occur only if an RBR-to-
DRR copy is complete. Therefore, if DRR has not been read by the CPU or
DMA since the last RBR-to-DRR transfer (RRDY = 1), an RBR-to-DRR copy
will not take place until RRDY = 0. This prevents an RSR to RBR copy. At this
time, new data arriving on DR pin is shifted into RSR and the previous contents
of RSR is lost. This data loss occurs because completion of reception of a seri-
al word triggers an RBR-to-DRR transfer only when RRDY = 0. Note that after
the receive portion starts running from reset, a minimum of three words must
be received before RFULL is set because there was no last RBR-to-DRR

transfer before the first word.

This data loss can be avoided if DRR is read no later than two and a half cycles
before the end of (third) next word (data C) in RSR.

Any one of the following events clears the RFULL bit to 0 and allows subsequent
transfers to be read properly:

1) Reading DRR
2) Resetting the receiver (RRST = 0) or the device.

Another frame synchronization is required to restart the receiver.

Figure 8–23 shows the receive overrun condition. Because serial word A is not
read before the reception of serial word B is complete, B is not transferred to
DRR yet. Now, another new word C arrives and RSR is full with this data. DRR
is finally read, but not earlier than two and one half cycles before the end of
word C. Therefore, new data D overwrites the previous word C in RSR. If
RFULL is still set after the DRR is read, the next word can overwrite D, if DRR

is not read in time.
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Figure 8–23. Serial Port Receive Overrun
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Figure 8–24 shows the case where RFULL is set, but the overrun condition is
averted by reading the contents of DRR at least two and a half cycles before
the next serial word C is completely shifted into RSR. This ensures that a RBR-
to-DRR copy of data B occurs before the next serial word (C) is transferred

from RSR to RBR.

Figure 8–24. Serial Port Receive Overrun Avoided
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8.3.7.2 Unexpected Receive Frame Synchronization: RSYNCERR

Figure 8–25 shows the decision tree that the receiver uses to handle all incoming
frame synchronization pulses. The diagram assumes that the receiver has been
activated, RRST = 1. Unexpected frame sync pulses can originate from an ex-
ternal source or from the internal sample rate generator. Any one of four cases

can occur:

� Case 1 : Unexpected FSR_int pulses with RFIG = 1. This case is discussed
in 8.3.6.2 and shown in Figure 8–22. Here, receive frame sync pulses are
ignored and the reception continues.

� Case 2: Normal serial port reception. Note that there are three possible
reasons why a receive might NOT be in progress:

1) This FSR is the first after RRST = 1.

2) This FSR is the first after DRR is read clearing a RFULL condition.

3) The serial port is in the inter-packet intervals. The programmed data delay
(RDATDLY) for reception may start during these inter-packet intervals for
the first bit of the next word to be received. Thus, at maximum packet fre-
quency, frame synchronization can still be received RDATDLY bit clocks
before the first bit of the associated word. Alternatively, unexpected frame
sync pulses are detected when they occur at or before RDATDLY minus
1 or more bit clocks before the last bit of the previous word is received on
DR pin.

For this case, reception continues normally since these are not unexpected
frame sync pulses.

� Case 3: Unexpected receive frame synchronization with RFIG = 0 (unex-
pected frame not ignored). This case was shown in Figure 8–21 for maxi-
mum packet frequency. Figure 8–26 shows this case during normal
operation of the serial port with inter-packet intervals. In both cases,
RSYNCERR bit in the SPCR is set. RSYNCERR can be cleared only by
receiver reset or by the user writing a 0 to this bit in the SPCR. Note that
if RINTM = 11b in the SPCR, RSYNCERR drives the receive interrupt
(RINT) to the CPU.

Note:

Note that the RSYNCERR bit in the SPCR is a read/write bit. Therefore writing
a 1 to it, sets the error condition. Typically, writing a 0 is expected.
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Figure 8–25. Response to Receive Frame Synchronization Pulse
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Figure 8–26. Unexpected Receive Synchronization Pulse
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8.3.7.3 Transmit with Data Overwrite

Figure 8–27 depicts what happens if the data in DXR is overwritten before being
transmitted. Initially, the programmer loaded the DXR with data C. A subsequent
write to the DXR overwrites C with D before it is copied to the XSR. Thus, C is
never transmitted on DX. The CPU can avoid overwriting data by polling XRDY
before writing to DXR or by waiting for an XINT programmed to be triggered by
XRDY (XINTM = 00b). The DMA can avoid overwriting by write synchronizing

data transfers with XEVT.

Figure 8–27. Transmit with Data Overwrite
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8.3.7.4 Transmit Empty: XEMPTY

XEMPTY indicates whether the transmitter has experienced under-flow. Any of
the following conditions causes XEMPTY to become active (XEMPTY = 0):

1) Under-flow during transmission occurs when DXR has not been loaded
since the last DXR-to-XSR copy, and all bits of the data word in the XSR
have been shifted out on DX.

2) The transmitter is reset (XRST = 0 or device is reset) and then restarted.

During underflow condition, the transmitter continues to transmit the old data
in DXR until a new word is loaded into DXR by the CPU or DMA. XEMPTY is
deactivated (XEMPTY = 1) after DXR is loaded by either the CPU or DMA. In
the case of internal frame generation, the transmitter re-generates a single
FSX_int initiated by a DXR-to-XSR copy (FSXM = 1 in the PCR and FSGM =
0 in SRGR). Otherwise, the transmitter waits for the next frame synchroniza-

tion.

When the transmitter is taken out of reset (XRST = 1), it is in a transmit ready
(XRDY = 1) and transmit empty (XEMPTY = 0) condition. If DXR is loaded by
the CPU or DMA before FSX_int goes active high, a valid DXR-to-XSR transfer
occurs. This allows for the first word of the first frame to be valid even before
the transmit frame sync pulse is generated or detected. Alternatively, if a trans-
mit frame sync is detected before DXR is loaded, zeros will be output on DX.
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Figure 8–28 depicts a transmit under-flow condition. After B is transmitted, the
programmer fails to reload the DXR before the subsequent frame synchro-
nization. Thus, B is again transmitted on DX. Figure 8–29 shows the case of
writing to DXR just before a transmit under-flow condition that would otherwise
occur. After B is transmitted, C is written to DXR before the next transmit frame
sync pulse occurs so that C is successfully transmitted on DX, averting a trans-

mit empty condition.

Figure 8–28. Transmit Empty
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8.3.7.5 Unexpected Transmit Frame Synchronization: XSYNCERR

Figure 8–25 shows the decision tree that the transmitter uses to handle all
incoming frame synchronization signals. The diagram assumes that the trans-

mitter has been started, XRST = 1. Any one of three cases can occur:

� Case 1: Unexpected FSX_int pulses with RXFIG = 1. This case is dis-
cussed in 8.3.6.2 and shown in Figure 8–22.

� Case 2: Normal serial port transmission is discussed in subsection
8.3.5.3. Note that there are two possible reasons why a transmit might
NOT be in progress:

1) This FSX_int pulse is the first after XRST = 1.

2) The serial port is in the inter-packet intervals. The programmed data
delay (XDATDLY) may start during these inter-packet intervals before
the first bit of the next word is transmitted. Thus, if operating at maximum
packet frequency, frame synchronization can still be received XDATDLY bit
clocks before the first bit of the associated word.

Figure 8–30. Response to Transmit Frame Synchronization
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� Case 3: Unexpected transmit frame synchronization with XFIG = 0. The
case for subsequent frame synchronization with XFIG = 0 at maximum
packet frequency is shown in Figure 8–21. Figure 8–31 shows the case
for normal operation of the serial port with inter-packet intervals. In both
cases, XSYNCERR bit in the SPCR is set. XSYNCERR can only be
cleared by transmitter reset or by the user writing a 0 to this bit in the
SPCR. Note that if XINTM = 11b in the SPCR, XSYNCERR drives the
receive interrupt (XINT) to the CPU.

Note:

Note that the XSYNCERR bit in the SPCR is a read/write bit. Therefore writing
a 1 to it, sets the error condition. Typically, writing a 0 is expected.

Figure 8–31. Unexpected Transmit Frame Synchronization Pulse
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DXR to XSR copy (B) Write of DXR (C) DXR to XSR (C) Write of DXR (D)

8.3.8 Receive Data Justification and Sign-Extension: RJUST

RJUST in the SPCR selects whether data in the RBR is right or left justified
(with respect to the MSB) in the DRR. If right-justification is selected RJUST
further selects whether the data is sign-extended or zero-filled. Table 8–11
shows the effect various modes of RJUST have on an example 12-bit receive

data value 0xABC.

Table 8–11. Use of RJUST Field with 12-Bit Example Data 0xABC

RJUST Justification Extension Value in DRR

00 right zero-fill MSBs 0x00000ABC

01 right sign-extend MSBs 0xFFFFFABC

10 left zero-fill LSBs 0xABC00000

11 reserved reserved reserved
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8.4 µ-LAW/A-LAW Companding Hardware Operation

Companding (COMpress and exPAND) hardware allows compression and
expansion of data in either µ-law or A-law format. The companding standard
employed in the United States and Japan is µ-law. The European companding
standard is referred as A-law. The specification for µ-law and A-law log PCM
is part of the CCITT G.711 recommendation. A-law and µ-law allow 13-bits and
14-bits of dynamic range, respectively. Any values outside this range will be
set to the most positive or most negative value. Thus, for companding to work
best, the data transferred to and from the McBSP via the CPU or DMA must

be at least 16-bit wide data.

The µ-law and A-law formats encode this data into 8-bit code words. Thus, as
companded data is always 8-bit wide, the appropriate (R/X)WDLEN(1/2) must
be set to 0, indicating 8-bit wide serial data stream. If either phase of the frame
does not have an 8-bit word length, companding continues as if the word

length is 8-bits.

When companding is used, transmit data is encoded according to the speci-
fied companding law, and receive data is decoded to 2’s complement format.
Companding is enabled and the desired format selected by appropriately setting
(R/X)COMPAND in the (R/X)CR as shown in Table 8–6. Compression occurs
during the process of copying data from DXR to XSR and from RBR to DRR as

shown in Figure 8–32.

Figure 8–32. Companding Flow
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For transmit data to be compressed, it should be a 16-bit left justified data, say
LAW16. The value can be either 13- or 14-bits depending on the companding
law as shown in Figure 8–33. This 16-bit transmit data is aligned in DXR as

shown in Table 8–12.

µ-LAW/A-LAW Companding Hardware Operation
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Figure 8–33. Companding Data Formats

LAW16 15                  2 1         0

µ-Law Value 0

LAW16 15                    3 2         0

A-law Value 0

Table 8–12. Transmit Data Companding Format

DXR

31                      16 15                        0

Don’t Care LAW16

For reception, the 8-bit compressed data in RBR is expanded to a left-justified
16-bit data, LAW16. This can be further justified to a 32-bit data by programming

the RJUST field in the SPCR as shown in Table 8–13.

Table 8–13. Justification of Expanded Data (LAW16)

DRR

RJUST 31             16 15              0

00 0 LAW16

01 sign LAW16

10 LAW16 0

11 reserved

8.4.1 Companding Internal Data

If the McBSP is otherwise unused, the companding hardware can compand
internal data. This hardware can be used to:

� Convert linear to the appropriate µ-law or A-law format.

� Convert µ-law or A-law to the linear format.

� To observe the quantization effects in companding by transmitting linear
data, and compressing and re-expanding this data. This is only useful if
both XCOMPAND and RCOMPAND enable the same companding format.

µ-LAW/A-LAW Companding Hardware Operation
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Figure 8–34 shows two methods by which the McBSP can compand internal
data.

1) When both the transmit and receive sections of the serial port are reset,
the DRR and DXR are internally connected through the companding logic.
Values from the DXR are compressed as selected by XCOMPAND and
then expanded as selected by RCOMPAND. Note that RRDY and XRDY
bits will not be set. However, data is available in DRR within four CPU
clocks after being written to DXR. The advantage of this method is its
speed. The disadvantage is that there is no synchronization available to
the CPU and DMA to control the flow.

2) The McBSP is enabled in digital loop back mode with companding appropri-
ately enabled by RCOMPAND and XCOMPAND. Receive and transmit inter-
rupts (RINT when RINTM = 0 and XINT when XINTM = 0) or synchronization
events (REVT and XEVT) allow synchronization of the CPU or DMA to these
conversions, respectively. Here, the time for this companding depends on the
serial bit rate selected.

Figure 8–34. Companding of Internal Data
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8.4.1.1 Bit Ordering

Normally, all transfers on the McBSP are sent and received with the MSB first.
However, certain 8-bit data protocols (that don’t use companded data) require
the LSB to be transferred first. By setting the (R/X)COMPAND = 01b in the
(R/X)CR, the bit ordering of 8-bit words are reversed (LSB first) before being
sent to the serial port. Similar to companding, this feature is only enabled if the
appropriate (R/X)WDLEN(1/2) is set to 0, indicating 8-bit words to be transferred

serially.

µ-LAW/A-LAW Companding Hardware Operation
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8.5 Programmable Clock and Framing

The McBSP has several means of selecting clocking and framing for both the
receiver and transmitter. Clocking and framing can be sent to both portions by
the sample rate generator. Both portions can select external clocking and/or
framing independently. Figure 8–35 shows a block diagram of the clock and
frame selection circuitry. The features enabled by this logic are explained in

the following subsections.

Figure 8–35. Clock and Frame Generation
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8.5.1 Sample Rate Generator Clocking and Framing

The sample rate generator is composed of a three stage clock divider that allows
programmable data clocks (CLKG) and framing signals (FSG) as shown in
Figure 8–36. CLKG and FSG are McBSP internal signals that can be pro-
grammed to drive receive and/or transmit clocking (CLKR/X) and framing (FSR/
X). The sample rate generator can be programmed to be driven by an internal
clock source or an internal clock derived from an external clock source. The three

stages compute:

1) Clock divide down (CLKGDV): The number of input clocks per data bit
clock.

2) Frame period divide down (FPER): The frame period in data bit clocks.

3) Frame width count down (FWID): The width of an active frame pulse in
data bit clocks.

In addition, a frame pulse detection and clock synchronization module allows
synchronization of the clock divide down with an incoming frame pulse. The
operation of the sample rate generator during device reset is described in sub-

section 8.3.1.

Figure 8–36. Sample Rate Generator
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8.5.1.1 Sample Rate Generator Register (SRGR)

The Sample Rate Generator Register (SRGR) shown in Figure 8–37 and
Table 8–14 controls the operation of various features of the sample rate
generator. The following subsections describe how you can configure its

operation using the SRGR bit-fields.

Figure 8–37. Sample Rate Generator Register (SRGR)

31 30 29 28 27                                                                                                                     16

GSYNC CLKSP CLKSM FSGM FPER

RW, +0 RW, +0 RW, +1 RW, +0 RW, +0

15                                                                                                        8 7                                                                              0

FWID CLKGDV

RW, +0 RW, +1

Table 8–14. Sample Rate Generator Register (SRGR) Bit-Field Summary 

Name Function Section

GSYNC Sample rate generator clock synchronization.

Only used when the external clock (CLKS) drives the sample rate generator clock
(CLKSM = 0).

GSYNC = 0, the sample rate generator clock (CLKG) is free running.

GSYNC = 1, the sample rate generator clock (CLKG) is running. But CLKG is
re-synchronized and frame sync signal (FSG) is generated only after detecting the
receive frame synchronization signal (FSR). Also, frame period, FPER, is a don’t
care because the period is dictated by the external frame sync pulse.

8.5.2.4

CLKSP CLKS Polarity Clock Edge Select. Only used when the external clock CLKS drives
the sample rate generator clock (CLKSM = 0).

CLKSP = 0, rising edge of CLKS generates CLKG and FSG.

CLKSP = 1, falling edge of CLKS generates CLKG and FSG.

8.5.2.3

CLKSM McBSP Sample Rate Generator Clock Mode

CLKSM = 0, Sample rate generator clock derived from the CLKS pin.

CLKSM = 1, Default value; Sample rate generator clock derived from CPU clock.

8.5.2.2

FSGM Sample Rate Generator Transmit frame synchronization mode. Used when FSXM
= 1 in PCR.

FSGM = 0, Transmit frame sync signal (FSX) generated on every DXR-to-XSR copy.

FSGM = 1, Transmit frame sync signal driven by the sample rate generator frame
sync signal, FSG.

8.5.3.3
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Table 8–14. Sample Rate Generator Register (SRGR) Bit-Field Summary (Continued)

Name SectionFunction

FPER Frame Period. This determines when the next frame sync signal should become
active.

Range: up to 212 ; 1 to 4096 CLKG periods.

8.5.3.1

FWID Frame Width. Determines the width of the frame sync pulse, FSG, during its active
period.

Range: up to 28 ; 1 to 256 CLKG periods.

8.5.3.1

CLKGDV Sample rate generator clock divider. This value is used as the divide-down number
to generate the required sample rate generator clock frequency. Default value is 1.

8.5.2.2

8.5.1.2 Sample Rate Generator Reset Procedure

The sample rate generator reset and initialization procedure is as follows:

1) During device reset, GRST = 0. Otherwise, during normal operation, the
sample rate generator can be reset with GRST = 0 in SPCR, provided
CLKG and/or FSG (FRST = 1) is not used by any portion of the McBSP.
If GRST is low due to device reset, CLKG is driven by a divide-by-2 CPU
clock and FSG is driven inactive low. If GRST = 0 as desired by the user,
CLKG and FSG are driven inactive low. If necessary, set (R/X)RST = 0.

2) Program SRGR as required. If necessary, other control registers can be
written with desired values provided the respective portion (R/X) is in reset.

3) Wait two CLKSRG clocks. This is to ensure proper synchronization internally.

4) Set GRST = 1 to enable the sample rate generator.

5) Wait two CLKG bit clocks.

6) Now, the receiver and/or transmitter can be pulled out of reset
((R/X)RST = 1) if required.

7) On the next rising edge of CLKSRG, CLKG transitions to 1 and starts
clocking with a frequency equal to (CPU clock / (1+CLKGDV)).

8) After the required data acquisition setup is done such as writing to DXR,
FRST can be written with 1 in the SPCR, if an internally generated frame
pulse is required. FSG is generated with a active high edge after the pro-
grammed number of (FPER+1) CLKG clocks have elapsed. For example,
if FPER = 7, FSG is generated (if FSGM = 1) after 8 CLKG clocks.
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8.5.2 Data Clock Generation

When the receive/transmit clock mode is set to 1 (CLK(R/X)M = 1), the data
clocks (CLK(R/X)) are driven by the internal sample rate generator output
clock, CLKG. You can select from a variety of data bit clocks independently for

the receiver and transmitter. These options include:

� The input clock to the sample rate generator can be either the CPU clock
or a dedicated external clock source (CLKS).

� The input clock (CPU clock or external clock CLKS) source to the sample
rate generator can be divided down by a programmable value (CLKGDV)
to drive CLKG.

Irrespective of the source to the sample rate generator, the rising edge of
CLKSRG (see Figure 8–36) generates CLKG and FSG (also, see subsection

8.5.2.3).

8.5.2.1 Input Clock Source Mode: CLKSM

The CLKSM bit in the SRGR selects either the CPU clock (CLKSM = 1) or the
external clock input (CLKSM = 0), CLKS, as the source for the sample rate
generator input clock. Any divide periods are divide-downs calculated by the

sample rate generator and are timed by this input clock selection.

8.5.2.2 Sample Rate Generator Data Bit Clock Rate: CLKGDV

The first divider stage generates the serial data bit clock from the input clock.
This divider stage utilizes a counter that is pre-loaded by CLKGDV which con-
tains the divide ratio value. The output of this stage is the data bit clock which
is output on sample rate generator output, CLKG, and serves as the input for

the second and third divider stages.

CLKG has a frequency equal to 1/(CLKGDV+1) of sample rate generator input
clock. Thus, sample generator input clock frequency is divided by a value from
1–256. When CLKGDV is odd or equal to 0, the CLKG duty cycle is 50%. When
CLKGDV is an even value, 2p, representing an odd divide-down, the high state

duration is p+1 cycles and the low state duration is p cycles.

8.5.2.3 Bit Clock Polarity: CLKSP

External clock (CLKS) is selected to drive the sample rate generator clock
divider by selecting CLKSM = 0. In this case, the CLKSP bit in the SRGR
selects the edge of CLKS on which sample rate generator data bit clock
(CLKG) and frame sync signal (FSG) are generated. Since the rising edge of
CLKSRG (see Figure 8–36) generates CLKG and FSG, the rising edge of
CLKS when CLKSP = 0 or the falling edge of CLKS when CLKSP = 1 causes

the transition on the data bit-rate clock (CLKG) and FSG.
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8.5.2.4 Bit Clock and Frame Synchronization

When CLKS is selected to drive the sample rate generator (CLKSM = 0),
GSYNC can be used to configure the timing of CLKG relative to CLKS. GSYNC
= 1 ensures that the McBSP and the external device it is communicating to, are
dividing down the CLKS with the same phase relationship. If GSYNC = 0, this
feature is disabled and therefore CLKG runs freely and is not re-synchronized.
If GSYNC = 1, an active transition on FSR triggers a re-synchronization of CLKG
and generation of FSG. CLKG always begins with a high state after synchro-
nization. Also, FSR is always detected at the same edge of CLKS that generates
CLKG, no matter how wide the FSR is. Although an external FSR is provided,
FSG can still drive internal receive frame synchronization when GSYNC = 1.
Note that when GSYNC = 1, FPER is a don’t care because the frame period is

determined by the arrival of the external frame sync pulse.

Figure 8–38. CLKG Synchronization and FSG generation when GSYNC = 1 
and CLKGDV = 1
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CLKS (CLKSP = 0)

CLKS (CLKSP = 1)

Figure 8–38 and Figure 8–39 shows this operation with various polarities of
CLKS and FSR. These figures assume:

� FWID = 0, for a FSG one CLKG wide.
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Figure 8–39. CLKG Synchronization and FSG generation when GSYNC = 1 
and CLKGDV = 3
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Note that FPER is not programmed since it is determined by the arrival of the
next external frame sync pulse. The figure shows what happens to CLKG
when it is initially in sync and GSYNC = 1 as well as when it is not in sync with

the frame synchronization and GSYNC = 1.

When GSYNC = 1, the transmitter can operate synchronously with the receiv-
er provided:

1) FSX is programmed to be driven by the sample rate generator frame sync
FSG (FSGM = 1 in the SRGR and FSXM = 1 in the PCR). If the input FSR
has the timing so that it can be sampled by the falling edge of CLKG, it can
be used instead, by setting FSXM = 0 in the PCR and connecting FSR to
FSX externally.

2) The sample rate generator clock should drive the transmit and receive bit
clock (CLK(R/X)M = 1 in the SPCR). Therefore, the CLK(R/X) pin should
not be driven by any other driving source.
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8.5.2.5 Digital Loop Back Mode: DLB

Setting DLB = 1 in the SPCR enables digital loop back mode. During DLB
mode, the DR, FSR, and CLKR are internally connected to DX, FSX, CLKX
respectively, through multiplexers as shown in Figure 8–35. DLB mode allows
testing of serial port code with a single DSP device. Figure 8–35 shows the

multiplexing of receiver control inputs during digital loop back mode.

8.5.2.6 Receive Clock Selection: DLB, CLKRM

Table 8–15 shows how the digital loop back bit (DLB) and the CLKRM bit in the
PCR can select the receiver clock. In digital loop back mode (DLB = 1), the
transmitter clock drives the receiver. CLKRM determines whether the CLKR

pin is an input or an output.

Table 8–15. Receive Clock Selection

DLB
in SPCR

CLKRM
in PCR Source of Receive Clock CLKR Pin

0 0 CLKR pin acts as an input driven by
external clock and inverted as deter-
mined by CLKRP before being used.

Input

0 1 Sample Rate Generator Clock (CLKG)
drives CLKR.

Output. CLKG inverted as determined by
CLKRP before being driven out on CLKR.

1 0 CLKX_int drives the receive clock
CLKR_int as selected and inverted
as shown in Table 8–16.

High Impedance

1 1 CLKX_int drives CLKR_int as se-
lected and inverted as shown in
Table 8–16.

Output. CLKR (same as transmit) inverted as
determined by CLKRP before being driven
out.

8.5.2.7 Transmit Clock Selection: CLKXM

Table 8–16. Transmit Clock Selection

CLKXM
in PCR Source of Transmit Clock CLKX Pin

0 External clock drives the CLKX input pin.
CLKX is inverted as determined by CLKXP
before being used.

Input

1 Sample rate generator clock, CLKG, drives
transmit clock

Output. CLKG inverted as determined by
CLKXP before being driven out on CLKX.
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8.5.3 Frame Sync Signal Generation

Like data bit clocking, data frame synchronization is also independently program-
mable for the receiver and transmitter for all data delays. The FRST bit in the
SPCR when set to 1 activates the frame generation logic to generate frame sync
signals provided FSCM = 1 in SRGR. Frame sync programming options include:

� A frame pulse with programmable period between sync pulses, and program-
mable active width using the sample rate generator register (SRGR).

� The transmit portion may trigger its own frame sync signal generated by
a DXR-to-XSR copy.

� Both the receive and transmit sections may independently select an external
frame synchronization on the FSR and FSX pins, respectively.

Another method of generating frame sync pulses is to program FSGM = 0. This
causes a frame sync to occur on every DXR to XSR copy. The data delays can
be programmed as required. However, maximum packet frequency cannot be
achieved in this method for data delays one and two. This limitation can be

overcome by programming the frame ignore bit (R/X)FIG = 1.

8.5.3.1 Frame Period and Frame Width: FPER and FWID

The FPER and FWID are implemented as down-counters. The FPER stage
is a 12-bit down-counter which can count down the generated data clocks from
4095 to 0. The FWID stage in the sample rate generator is an 8-bit down count-
er. The FWID field controls the active width of the frame sync pulse. Both of
these counters get loaded with their respective programmed value in FPER

and FWID.

Once the sample rate generator is out of reset, FSG is in an inactive-low state.
After this, when FRST = 1 and FSGM = 1 frame sync signals are generated.
The frame width value (FWID+1) is counted down on every CLKG cycle until
it reaches zero when FSG goes low. At the same time, the frame period value
(FPER+1) is also counting down and when this value reaches zero, FSG goes
high again indicating a new frame. We recommend that FWID be programmed

to a value less than WDLEN(1/2).

Thus, the value of FPER+1 determines a frame length from 1 to 4096 data bits.
When GSYNC = 1, FPER is a don’t care value. Figure 8–40 shows a frame of
period 16 CLKG periods (FPER = 15 or 00001111b). Thus, the value of
FWID+1 determines a active frame pulse width ranging from 1 to 256 data bit
clocks.  Figure 8–40 shows a frame with an active width of 2 CLKG periods

(FWID = 1).
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Figure 8–40. Programmable Frame Period and Width
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8.5.3.2 Receive Frame Sync Selection: DLB, FSRM, GSYNC

Table 8–17 shows how you may select various sources to provide the receive
frame synchronization signal. Note that in digital loop back mode (DLB = 1) the
transmit frame sync signal is used as the receive frame sync signal and that

DR is connected to DX internally.

Table 8–17. Receive Frame Synchronization Selection

DLB
in SPCR

FSR
in PCR

GSYNC
in SRGR

Source of Receive Frame
Synchronization

FSR Pin

0 0 x External frame sync signal drives
the FSR input pin. This is then
inverted as determined by FSRP
before being used as FSR_int.

Input.

0 1 0 FSR_int driven by Sample Rate
Generator Frame Sync signal
(FSG), FRST = 1

Output. FSG inverted as deter-
mined by FSRP before being
driven out on FSR pin.

0 1 1 FSR_int driven by Sample Rate
Generator Frame Sync signal
(FSG), FRST = 1

Input. The external frame sync
input on FSR is used to synchro-
nize CLKG and generate FSG.

1 0 0 FSX_int drives FSR_int. FSX is
selected as shown in Table 8–18.

High Impedance.

1 X 1 FSX_int drives FSR_int and is
selected as shown in Table 8–18.

Input. External FSR not used for
frame synchronization but still
used to synchronize CLKG and
generate FSG since GSYNC = 1.

1 1 0 FSX_int drives FSR_int and is
selected as shown in Table 8–18.

Output. Receive (same as transmit)
frame synchronization inverted as
determined by FSRP before being
driven out.
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8.5.3.3 Transmit Frame Sync Signal Selection: FSXM, FSGM

Table 8–18 shows how you can select the source of transmit frame synchro-
nization pulses. The three choices are:

1) External frame sync input.
2) The sample rate generator frame sync signal, FSG.
3) A signal that indicates a DXR-to-XSR copy has been made.

Table 8–18. Transmit Frame Synchronization Selection

FSXM 
in PCR

FSGM
in SRGR

Source of Transmit Frame 
Synchronization

FSX Pin

0 x External frame sync input on FSX pin.
This is inverted by FSXP before being
used as FSX_int.

Input.

1 1 Sample Rate Generator Frame Sync
signal (FSG) drives FSX_int. FRST = 1

Output. FSG inverted by FSXP before
being driven out on FSX pin.

1 0 A DXR-to-XSR copy activates transmit
frame sync signal.

Output. One bit clock wide signal
inverted as determined by FSXP before
being driven out on FSX pin.

8.5.3.4 Frame Detection for Initialization

To facilitate detection of frame synchronization, the receive and transmit CPU
interrupts (RINT and XINT) may be programmed to detect frame synchroniza-
tion by setting RINTM = XINTM = 10b, in the SPCR. Unlike other types of serial
port interrupts, this mode can operate while the associated portion of the serial
port is in reset (such as activating RINT when the receiver is in reset). In that
case, the FS(R/X)M and FS(R/X)P still select the appropriate source and
polarity of frame synchronization. Thus even when the serial port is in reset
state, these signals are synchronized to CPU clock and then sent to the CPU
in the form of RINT and XINT at the point at which they feed the receive and
transmit portions of the serial port. Thus, a new frame synchronization pulse
can be detected, after which the CPU can safely take the serial port out of reset.
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8.5.4 Examples

8.5.4.1 Double-Rate ST-BUS

Figure 8–41 shows McBSP configuration to be compatible with the Mitel ST-
Bus. Note that this operation is running at maximum packet frequency.

� CLK(R/X)M = 1, CLK(R/X)_int generated internally by sample rate generator

� GSYNC = 1, synchronize CLKG with external frame sync signal input on
FSR. Note that CLKG is not synchronized (runs freely) until frame sync
signal is active. Also note that FSR is regenerated internally to form a mini-
mum pulse width.

� CLKSM = 1, external clock (CLKS) drives the sample rate generator
� CLKSP = 1, falling edge of CLKS generates CLKG and thus CLK(R/X)_int
� CLKGDV = 1, receive clock (shown as CLKR) is half of CLKS frequency

� FS(R/X)P = 1, active-low frame sync pulse
� (R/X)FRLEN1 = 11111b, 32 words per frame
� (R/X)WDLEN1 = 0, 8-bit word

� (R/X)PHASE = 0, single phase frame and thus (R/X)FRLEN2 =
(R/X)WDLEN2 = X

� (R/X)DATDLY = 0, no data delay

Figure 8–41. ST-BUS and MVIP Example

W2B7W1B0W1B1W1B2W1B3W1B4W1B5W1B6W1B7

W2B7W1B0W1B1W1B2W1B3W1B4W1B5W1B6W1B7

W32B0

2.048MHz CLKG,
 CLKR_int,

CLKX_int (first FSR)

DR, DX
 (subsequent FSR)

CLKG, CLKR_int,
 CLKX_int

(subsequent FSR)

DR, DX (first FSR)

FSG, FSR_int,
 FSX_int

FSR external

4.096-MHz CLKS
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8.5.4.2 Single Rate ST-BUS Clock

This example is the same as the ST-BUS example except for the following:

� CLKGDV = 0, CLKS drives CLK(R/X)_int without any divide down (single
rate clock).

� CLKSP = 0, rising edge of CLKS generates internal clocks CLKG,
CLK(R/X)_int.

Figure 8–42. Single Rate Clock Example

W2B7W1B0W1B1W1B2W1B3W1B4W1B5W1B6W1B7

W2B7W1B0W1B1W1B2W1B3W1B4W1B5W1B6W1B7

W32B0

CLKG, CLKR_int,
 CLKX_int (first FSR)

DR, DX
 (subsequent FSR)

CLKG, CLKR_int,
CLKX_int

 (subsequent FSR)

DR, DX (first FSR)

FSG, FSR_int, FSX_int

FSR external

CLKS

The rising edge of CLKS is used to detect the external FSR. This external frame
sync pulse is used to re-synchronize internal McBSP clocks and generate frame
sync for internal use. Note that the internal frame sync is generated so that it is

wide enough to be detected on the falling edge of internal clocks.
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8.5.4.3 Double Rate Clock Example

This example is the same as the ST-BUS example except for the following:

� CLKSP = 0, rising edge of CLKS generates CLKG and thus CLK(R/X)

� CLKGDV = 1, CLKG and thus CLKR_int and CLKX_int frequency is half
of CLKS.

� GSYNC = 0, CLKS drives CLKG. CLKG runs freely and is not re-synchro-
nized by FSR.

� FS(R/X)M = 0, frame synchronization is externally generated. The framing
pulse is wide enough to be detected.

� FS(R/X)P = 0, active-high input frame sync signal

� (R/X)DATDLY = 1, data delay of 1-bit

Figure 8–43. Double Rate Clock Example

W2B7W1B0W1B1W1B2W1B3W1B4W1B5W1B6W1B7W32B0

CLK(R/X)_int

 D(R/X)

 FS(R/X)_int

CLKS
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8.6 Multichannel Selection Operation

Multiple channels can be independently selected for the transmitter and receiver
by configuring the McBSP with a single phase frame (see subsection 8.3.4.3).
The number of words per frame represented by (R/X)FRLEN1, denotes the num-

ber of channels available for selection.

Each frame represents a time-division multiplexed (TDM) data stream. In using
time-division multiplexed data streams, the CPU may only need to process a
few of them. Thus, to save memory and bus bandwidth, multichannel selection
allows independent enabling of particular channels for transmission and recep-

tion. Up to 32 channels in an up to 128 channel bit stream can be enabled.

If a receive channel is not enabled:

� RRDY is not set to 1 upon reception of the last bit of the word.

� RBR is not copied to DRR upon reception of the last bit of the word. Thus,
RRDY is not set active. This feature also implies that no interrupts or synchro-
nization events are generated for this word.

If a transmit channel is not enabled:

� DX is in high impedance.

� A DXR-to-XSR transfer is not automatically triggered at the end of serial
transmission of the related word.

� XEMPTY and XRDY similarly are not affected by the end of transmission
of the related serial word .

A transmit channel which is enabled can have its data masked or transmitted.
When masked, the DX pin will be forced to high impedance although the transmit

channel is enabled.

8.6.1 Multichannel Operation Control Registers

The following control registers are used in multichannel operation:

1) The Multichannel Control (MCR) Register
2) The Transmit Channel Enable (XCER) Register
3) The Receive Channel Enable (RCER) Register

The use of these registers in controlling multichannel operation is described
in the following sections.
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Figure 8–44. Multichannel Control Register

31                                                                          25 24           23 22            21 20  18 17                      16

reserved XPBBLK XPABLK XCBLK XMCM

R, +0 RW, +0 RW, +0 R, +0 RW, +0

15                                                                            9 8               7 6                5 4                       2 1 0

reserved RPBBLK RPABLK RCBLK reserved RMCM

R, +0 RW, +0 RW, +0 R, +0 R, +0 RW, +0

Table 8–19. Multichannel Control Register Bit-Field Descriptions 

Name Function Section

RMCM Receive Multichannel Selection Enable

RMCM = 0, all 128 channels enabled.

RMCM = 1, all channels disabled by default. Required channels are selected by
enabling RP(A/B)BLK and RCER appropriately.

8.6.2

XMCM Transmit Multichannel Selection Enable

XMCM = 00b, all channels enabled without masking (DX is always driven during
transmission of data).�

XMCM = 01b, all channels disabled and therefore masked by default. Required
channels are selected by enabling XP(A/B)BLK and XCER appropriately. Also,
these selected channels are not masked and therefore DX is always driven.

XMCM = 10b, all channels enabled, but masked. Selected channels enabled via
XP(A/B)BLK and XCER are unmasked.

XMCM = 11b, all channels disabled and therefore masked by default. Required
channels are selected by enabling RP(A/B)BLK and RCER appropriately.
Selected channels can be unmasked by RP(A/B)BLK and XCER. This mode is
used for symmetric transmit and receive operation.

8.6.3

RCBLK/
XCBLK

Receive/Transmit Current Block.

(R/X)CBLK = 000b, Block 0. Channel 0 to channel 15

(R/X)CBLK = 001b, Block 1. Channel 16 to channel 31

(R/X)CBLK = 010b, Block 2. Channel 32 to channel 47

(R/X)CBLK = 011b, Block 3. Channel 48 to channel 63

(R/X)CBLK = 100b, Block 4. Channel 64 to channel 79

(R/X)CBLK = 101b, Block 5. Channel 80 to channel 95

(R/X)CBLK = 110b, Block 6. Channel 96 to channel 111

(R/X)CBLK = 111b, Block 7. Channel 112 to channel 127

8.6.3.2
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Table 8–19. Multichannel Control Register Bit-Field Descriptions (Continued)

Name SectionFunction

RPBBLK/
XPBBLK

Receive/Transmit Partition B Block.

(R/X)PBBLK = 00b, Block 1. Channel 16 to channel 31

(R/X)PBBLK = 01b, Block 3. Channel 48 to channel 63

(R/X)PBBLK = 10b, Block 5. Channel 80 to channel 95

(R/X)PBBLK = 11b, Block 7. Channel 112 to channel 127

8.6.3

RPABLK/
XPABLK

Receive/Transmit Partition A Block.

(R/X)PABLK = 00b, Block 0. Channel 0 to channel 15

(R/X)PABLK = 01b, Block 2. Channel 32 to channel 47

(R/X)PABLK = 10b, Block 4. Channel 64 to channel 79

(R/X)PABLK = 11b, Block 6. Channel 96 to channel 111

8.6.3

� DX is masked or driven to hi–Z during (a) inter–packet intervals, (b) when a channel is masked regardless of
whether it is enabled, or (c) when a channel is disabled.

8.6.2 Enabling Multichannel Selection

Multichannel mode can be enabled independently for reception and transmis-
sion by setting RMCM = 1 and XMCM to a non-zero value in the MCR, respec-

tively.

8.6.3 Enabling and Masking of Channels

A total of 32 out of the available 128 channels may be enabled at any given
point in time. The 128 channels comprise eight blocks (0 through 7) and each
block has 16 contiguous channels. Further, even-numbered blocks 0, 2, 4, and
6 belong to Partition A, and odd-numbered blocks 1, 3, 5, and 7 belong to Parti-

tion B.

The number of channels enabled can be updated during the course of a frame
to allow any arbitrary group of channels to be enabled. This feature is accom-
plished using an alternating ping-pong scheme controlling two blocks (one
odd-numbered and other even-numbered) of 16 contiguous channels each,
at any given time within the frame. Thus one block belongs to Partition A and

the other to Partition B.

Any two out of the eight 16-channel blocks may be selected, yielding a total of
32 channels that can be enabled. The blocks are allocated on 16-channel
boundaries within the frame as shown in Figure 8–45. (R/X)PABLK and
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(R/X)PBBLK fields in the MCR determine the blocks that get selected in partition
A and B respectively. This enabling is performed independently for transmit and

receive.

Figure 8–45. Channel Enabling by Blocks in Partition A and B

112–127
3

80–95
2

48–63
1

16–31
0

0–15
0

96–111
3

64–79
2

32–47
1

0–15
0

076543210

FS(R/X)

Partition B
(R/X)PBBLK

Partition A
(R/X)PABLK

Block #

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Transmit data masking allows a channel enabled for transmit to have its DX pin
set to high impedance state during its transmit period. In systems where symmet-
ric transmit and receive provides software benefits, this feature allows transmit
channels to be disabled on a shared serial bus. A similar feature is not needed

for receive as multiple reception cannot cause serial bus contention.

Note:

DX is masked or driven to hi-Z during (a) inter-packet intervals, (b) when a
channel is masked regardless of whether it is enabled, or (c) when a channel
is disabled.

The following gives a description of the multichannel operation during transmit
for various XMCM values:

� XMCM = 00b: The serial port will transmit data over the DX pin for as many
number of words as programmed in XFRLEN1. Thus, DX is driven during
transmit.

� XMCM = 01b: Required channels or only those words that need to be
transmitted are selected via XP(A/B)BLK and XCER. Therefore only these
selected words will be written to DXR and ultimately transmitted. In other
words, if XINTM = 00b which implies that an XINT will be generated for ev-
ery DXR-to-XSR copy, the number of XINT generated will be equal to the
number of channels selected via XCER (and NOT equal to XFRLEN1).

� XMCM = 10b: For this case, all channels are enabled which means all the
words in a data frame (XFRLEN1) will be written to DXR and DXR-to-XSR
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copy occurs at their respective times. However, DX will be driven only for
those channels that are selected via XP(A/B)BLK and XCER and tri-stated
otherwise. In this case, if XINTM = 00b, the number of interrupts generated
due to every DXR-to-XSR copy would equal the number of words in that
frame (XFRLEN1).
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� XMCM = 11b: This mode is basically a combination of XMCM = 01b and
10b cases so that symmetric transmit and receive operation is achieved.
All channels are disabled and therefore DR and DX are in a state of high
impedance. For receiving, a RBR-to-DRR copy occurs only for those
channels that are selected via RP(A/B)BLK and RCER. If RINT were to be
generated for every RBR-to-DRR copy, it would occur as many times as
the number of channels selected in RCER (and NOT the number of words
programmed in RFRLEN1). For transmitting, the same block that is used
for reception is used in order to maintain symmetry and thus XP(A/B)BLK
is a don’t care. DXR is loaded and DXR-to-XSR copy occurs for all the
channels that are enabled via RP(A/B)BLK . However, DX will be driven
only for those channels that are selected via XCER. Note that the channels
enabled in XCER can only be a subset or same as those selected in
RCER. Therefore, if XINTM = 00b, transmit interrupts to the CPU would
be generated as many times as the number of channels selected in RCER
(not XCER).

Figure shows the activity on the McBSP pins for all the above modes with the
following conditions:

� (R/X)PHASE = 0, single phase frame for multichannel selection enabled
� FRLEN1 = 011b, 4-word frame
� WDLEN1 = any valid serial word length

Please note that in the following illustrations, the arrows showing where the
various events occur are only a sample indication. Wherever possible, there

is a time window in which these events could occur.
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Figure 8–46. XMCM Operation

(a) XMCM = 00b

DXR to XSR
(W0)

Write of DXR
(W1)

DXR to XSR copy
(W1)

Write of DXR
(W2)

DXR to XSR copy
(W2)

DXR to XSR copy
(W3)

W3W2W1

Write of DXR
(W3)

XRDY

DX W0

FSX_int
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Figure 8–46. XMCM Operation (Continued)
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8.6.3.1 Channel Enable Registers: (R/X)CER

The Receive Channel Enable (RCER) and Transmit Channel Enable (XCER)
registers are used to enable any of the 32 channels for receive and transmit,
respectively. Out of the 32 channels, 16 channels belong to a block in partition
A and the other 16 belong to a block in partition B. They are shown in
Figure 8–47 and Figure 8–48. (R/X)CEA and (R/X)CEB register fields shown in
Table 8–20 enable channels within the 16 channel wide blocks in partitions A
and B, respectively. The (R/X)PABLK and (R/X)PBBLK fields in the MCR select

which 16-channel blocks get selected.

Figure 8–47. Receive Channel Enable Register (RCER)
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Figure 8–48. Transmit Channel Enable Register (XCER) Diagram
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Table 8–20. Receive/Transmit Channel Enable Register Bit-Field Description

Name Function

(R/X)CEAn
0 ≤ n ≤ 15

Receive/Transmit Channel Enable

(R/X)CEA n = 0, Disables reception/transmission of nth channel in an even-numbered block
in partition A

(R/X)CEA n = 1, Enables reception/transmission of nth channel in an even-numbered block
in partition A

(R/X)CEBn
0 ≤ n ≤ 15

Receive/Transmit Channel Enable

(R/X)CEB n = 0, Disables reception/transmission of nth channel in odd-numbered block in
partition B.

(R/X)CEB n = 1, Enables reception/transmission of nth channel in odd-numbered block in
partition B.

8.6.3.2 Changing Channel Selection

Using the multichannel selection feature, a static group of 32 channels may be
enabled, and will remain enabled with no CPU intervention until this allocation re-
quires modification. An arbitrary number, group, or all of the words/channels with-
in a frame can be accessed, by updating the block allocation registers during the
course of the frame in response to the end-of-block interrupts (see 8.6.3.3 for

Update Interrupts).

However, the user must be careful when changing the selection, not to affect
the currently selected block. The currently selected block is readable through
the RCBLK and XCBLK fields in the MCR for receive and transmit respectively.
The associated channel enable register cannot be modified if it is selected by
the appropriate (R/X)P(A/B)BLK register to point toward the current block. Simi-
larly the (R/X)PABLK and (R/X)PBBLK fields in the MCR cannot be modified
while pointing to or being changed to point to the currently selected block. Note
that if the total number of channels is 16 or less, the current partition is always

pointed to. In this case, only a reset of the serial port can change enabling.

8.6.3.3 End-of-Block or End-of-Frame Interrupt

At the end of every 16-channel block boundary during multichannel operation,
the receive interrupt (RINT) or transmit interrupt (XINT) to the CPU is gener-
ated if RINTM = 01b or XINTM = 01b in the SPCR, respectively. This interrupt
indicates a new partition has been crossed. You can then check the current
partition and change the selection of blocks in the A and/or B partitions if they
do not point to the current block. These interrupts are two CPU clock long
active high pulses. Note that if RINTM = XINTM = 01b when (R/X)MCM = 0

(non-multichannel operation), it does not generate any interrupts.
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8.7 SPI  Protocol: CLKSTP

A system conforming to this protocol is a master-slave configuration. The SPI
protocol is a four wire interface comprising of serial data in (Master In Slave Out
or MISO), serial data out (Master Out Slave In or MOSI), shift clock (SCK), and
an active low slave enable (SS) signal. Communication between the master and
slave is determined by the presence or absence of the master clock. Therefore,
in absence of a dedicated frame synchronization signal, the data transfer is initi-
ated by the detection of the master clock and is terminated on absence of the
master clock. The slave has to be enabled during this period of transfer. In the
case of McBSP being the master, the slave enable is derived from the master
transmit frame sync pulse, FSX. An example block diagram of McBSP as a

master and as a slave is shown in Figure 8–49 and Figure 8–50.

Figure 8–49. SPI Configuration: McBSP as the Master

‘C6x McBSP
 Master

CLKX

CLKR

DX

DR

FSX

FSR
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Slave

SCK

MOSI

MISO

SS

The clock stop mode (CLKSTP) in the McBSP provides compatibility with the
SPI  protocol. Clock stop mode works with only single-phase frames
((R/X)PHASE = 0) and one word per frame. The word sizes supported by the
McBSP are programmable for 8-, 12-, 16-, 20-, 24-, or 32-bit operation. Clock
stop mode bit-field (CLKSTP) in the SPCR in conjunction with CLKXP bit in the
PCR, allows serial clocks to be stopped between transfers using one of four
possible timing variations as shown in Table 8–21. When the McBSP is config-
ured to operate in SPI mode, both the transmitter and the receiver operate to-
gether as a master or  a slave. The McBSP is a master when it generates
clocks. The master’s transmit clock drives its own receive clock and the clocks
to the slave device. In conjunction with CLKSTP enabled, CLKXM = 1 (in PCR)
indicates that the McBSP is a master, and CLKXM = 0 indicates that the

McBSP is an SPI slave.
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Figure 8–50. SPI Configuration: McBSP as the Slave
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The slave enable signal serves to enable the serial data input and output driver
on the slave device (device not outputting clock). Some devices do not have
the slave enable pin. In order to interface to devices with and without the slave

enable, an alternative framing scheme is used.

When the McBSP is the SPI master device, CLKX should be configured as an
output, and FSX should be configured as as an output (generated with a load of
DXR) which is connected to its own FSR (as an input) and to the slave enable
(SS) input on the slave device, if required. The FSGM bit in SRGR is zero so that
DXR to XSR transfer generates the FSX and hence FSR and slave enable signal.
The slave should be enabled before beginning the transfer which means that the
XDATDLY = 1 should be programmed. The CLKGDV (clock divide ratio) in SRGR
should be programmed to generate the required SPI data rate. The McBSP gen-
erates a continuous clock (CLKX) internally and gates the clock off (stops the
clock) to the external interface when transfers are complete. In this case receive
clock is provided from the internal, continuously running version, so the receiver

and transmitter both work internally as if clocks do not stop.

When the McBSP is a slave device, the internal serial port logic performs trans-
fers using only the exact number of input clock pulses per data bits. CLK(R/X)
pins are configured as inputs and are driven by the SPI master clock in the sys-
tem. If the master device provides a slave enable signal, it is connected to FSX/
FSR and is used in its asynchronous form. Thus, transmit and receive frame
sync mode bits, FSXM and FSRM should be set to 0. FSX, then, controls only
the initial drive of data to the DX pin. The (R/X)DATDLY in this case (McBSP
slave) should be zero so that data is driven out or shifted in on the same edge
where the frame sync occurs. If the master device does not provide a slave
enable, the external FSR/FSX pins are connected to an active level (as defined
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by FSX/FSR polarity control bits), and data is driven to the DX pin as soon as
DXR is loaded. The input clock and frame sync from the master is synchro-
nized to the CPU clock to allow reset. It is required that the CLKGDV be a value
such that the CLKG is at least 8 times the SPI data rate. The first data to be
transmitted is available on the DX pin, but is enabled only after detection of SPI

clock.

In clock stop mode, for both the transmitter and receiver, stopping of clocks is
handled differently depending on whether the clocks are externally or internal-
ly generated. In the case where clocks are externally generated, the external
device that is generating clocks holds clocks appropriately between trans-
mitted words. When the serial port clock is internally generated, this clock runs
continuously, and is simply gated off (clock stops) to the external pin when the
transfer is complete. In this case, transfers are performed in the same fashion

as with external free running clocks.

Table 8–21. SPI-Mode Clock Stop Scheme

CLKSTP CLKXP Clock Scheme

0X X Clock Stop Mode Disabled. Clock enabled for non-SPI mode.

10 0 Low inactive state without delay: The McBSP transmits data on the rising edge
of CLKX and receives data on the falling edge of CLKR.

11 0 Low inactive state with delay: The McBSP transmits data one half cycle ahead
of the rising edge of CLKX and receives data on the rising edge of CLKR.

10 1 High inactive state without delay: The McBSP transmits data on the falling
edge of CLKX and receives data on the rising edge of CLKR.

11 1 High inactive state with delay: The McBSP transmits data one half cycle ahead
of the falling edge of CLKX and receives data on the falling edge of CLKR.

CLKSTP and CLKXP bits selects the appropriate clock scheme for a particular
SPI interface as shown in Table 8–21 and Figure 8–51. CLKSTP bit-field in the

SPCR selects one of the following:

1) Whether clock stop mode is enabled or not.
2) In clock stop mode, whether the clock is high or low when stopped.

3) In clock stop mode, whether first clock edge occurs at the start of the first
data bit or at the middle of the first data bit.
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The CLKXP bit selects the edge on which data is transmitted (driven) and
received (sampled) as shown in Table 8–21.

Figure 8–51. Clock Stop Mode Options
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 CLK(R/X)_int CLKSTP = b110

CLK(R/X)_int CLKSTP = b111
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B0B1B2B3B4B5B6B7D(R/X)

FS(R/X)_int

CLK(R/X)_int CLKSTP = b101

 CLK(R/X)_int CLKSTP = b100

8.7.1 McBSP Initialization for SPI mode

The operation of the serial port during device reset, transmitter reset, and
receiver reset is described in subsection 8.3.1. For the case when the McBSP
needs to be configured for SPI receive/transmit operation as a master or a

slave, the following steps have to be followed for proper initialization:

1) Set XRST = RRST = 0 in SPCR.

2) Program the necessary McBSP configuration registers (and not the data
registers) listed in Table 8–2 as required when the serial port is in reset
state (XRST = RRST = 0) except for CLKSTP bits which should be 0Xb.
Note that CLKXP is also programmed in this stage.

3) Wait two bit clocks for the McBSP to re-initialize.

4) Write the desired value into the CLKSTP bit-fields in the SPCR.

5) Set XRST = RRST = 1 to enable the serial port. Note that the value written
to the SPCR at this time should have only the reset bits changed to 1 and
the remaining bit-fields should have the same value as in Step 2 and 4
above.

6) Wait two bit clocks for the receiver and transmitter to become active.
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8.8 McBSP Pins as General Purpose I/O

Two conditions allow the serial port pins (CLKX, FSX, DX, CLKR, FSR, and
DR) to be used as general purpose I/O rather than serial port pins:

1) The related portion (transmitter or receiver) of the serial port is in reset;
(R/X)RST = 0 in the SPCR, and

2) General purpose I/O is enabled for the related portion of the serial port;
(R/X)IOEN = 1 in the PCR.

Figure 8–3 has bits that configure each of the McBSP pins as general purpose
inputs or outputs. Table 8–22 shows how this is achieved. In the case of
FS(R/X), FS(R/X)M = 0 configures the pin as an input and FS(R/X)M = 1
configures that pin as an output. When configured as an output, the value driv-
en on FS(R/X) is the value stored in FS(R/X)P. If configured as an input, the
FS(R/X)P becomes a read only bit that reflects the status of that signal.
CLK(R/X)M and CLK(R/X)P work similarly for CLK(R/X). When the transmitter
is selected as general purpose I/O, the value of the DX_STAT bit in the PCR
is driven onto DX. DR is always an input and its value is held in the DR_STAT
bit in the PCR. To configure CLKS as a general purpose input, both the trans-
mitter and receiver have to be in reset state and (R/X)IOEN = 1, because it is
always an input to the McBSP and affects both transmit and receive opera-

tions.

Table 8–22. Configuration of Pins as General Purpose I/O

Pin

General Purpose 
I/O Enabled 
by Setting Both

Selected 
as Output

Output Value
Driven From

Selected 
as Input

Input Value
Readable on

CLKX XRST = 0
XIOEN = 1

CLKXM = 1 CLKXP CLKXM = 0 CLKXP

FSX XRST = 0
XIOEN = 1

FSXM = 1 FSXP FSXM = 0 FSXP

DX XRST = 0
XIOEN = 1

always DX_STAT never does not apply

CLKR RRST = 0
RIOEN = 1

CLKRM = 1 CLKRP CLKRM = 0 CLKRP

FSR RRST = 0
RIOEN = 1

FSRM = 1 FSRP FSRM = 0 FSRP

DR RRST = 0
RIOEN = 1

never does not apply always DR_STAT

CLKS RRST = XRST = 0
RIOEN = XIOEN = 1

never does not apply always CLKS_STAT
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Timer

This chapter describes the 32-bit timer functionality, registers and signals for the
TMS320C62xx.
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9.1 Overview

The device has two 32-bit general-purpose timers that you can use to:
� Time events
� Count events
� Generate pulses
� Interrupt the CPU
� Send synchronization events to the DMA

The timer has two signaling modes and can be clocked by an internal or an
external source. The timer has an input pin and an output pin. The input and
output pins, (TINP and TOUT) can function as timer clock input and clock out-
put. They can also be configured for general-purpose input and output,

respectively.

With an internal clock, for example, the timer can signal an external A/D
converter to start a conversion, or it can trigger the DMA controller to begin a
data transfer. With an external clock, for example, the timer can count external
events and interrupt the CPU after a specified number of events. Figure 9–1

shows a block diagram of the timer.
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Figure 9–1. Timer Block Diagram
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9.2 Timer Registers

Table 9–1 describes the three registers that configure timer operation.

Table 9–1. Timer Registers

Hex Byte Address

Timer 0 Timer 1 Name Description Section

01940004 01980004 Timer Period Contains the number of timer input clock cycles to count.
This number controls the TSTAT signal frequency.

9.2.1

01940000 01980000 Timer Control Determines the operating mode of the timer, monitors
the timer status, and controls the function of the TIM pin.

9.2.2

01940008 01980008 Timer Counter Current value of the incrementing counter. 9.2.3

9.2.1 Timer Control Register

Figure 9–2 shows the timer control register. Table 9–2 describes the bitfields
in this register.

Figure 9–2. Timer Control Register Diagram

15       12 11 10 9 8 7 6 5 4 3 2 1 0

reserved TSTAT INVINP CLKSRC C/P HLD GO reserved PWID DATIN DATOUT INVOUT FUNC

R, +0 R, +0 RW, +0 RW, +0 RW,
+0

RW,
+0

RW,
+0

R, +0 RW,+
0

R, +0 RW, +0 RW, +0 RW,
+0
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Table 9–2. Timer Control Register Field Description

Bitfield Description Section

FUNC Function of TIM pin.

FUNC = 0, TOUT is a general-purpose output pin.
FUNC = 1, TOUT is a timer pin.

9.5

DATOUT Data output.

When FUNC = 0 Data Out, Value driven out on TOUT.

When FUNC = 1, TSTAT driven on TOUT after inversion by INVOUT.

DATIN Data in. Value on TINP pin.

GO GO bit. Resets and starts the timer counter.

GO = 0, no effect to timer.
GO = 1, and HLD = 0, counter register zeroed and begins counting on next clock.

9.3

HLD Hold. Counter may be read or written regardless of HLD value.

HLD = 0, counter disabled and held in current state.
HLD = 1, counter allowed to count.

9.3

C/P Clock/pulse mode.

C/P = 0, pulse mode, TSTAT active one CPU clock after timer reaches timer period.
PWID determines when it goes inactive.

C/P = 1, clock mode, TSTAT has 50% duty cycle with high and low periods each one
countdown period wide.

9.6

PWID Pulse Width. Only used in pulse mode (C/P = 0). The TSTAT goes inactive one clock
after the timer counter does not equal PWID (0 or 1 as programmed.)

9.6

CLKSRC Timer Input Clock Source

CLKSRC = 0, value on TINP pin.
CLKSRC = 1, CPU clock/4.

9.5

INVINP TINP Inverter Control. Only affects operation if CLKSEC = 0.

INVINP = 0, uninverted TINP drives timer.
INVINP = 1, inverted TINP drives timer.

9.5

TSTAT Timer status. Value of timer output. 9.6

INVOUT TOUT Inverter Control. Only affects operator if FUNC = 1.

INVINP = 0, uninverted TSTAT drives TOUT.
INVINP = 1, inverted TSTAT drives TOUT.
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9.2.2 Timer Period Register

The timer period register (Figure 9–3) contains the number of timer input clock
cycles to count. This number controls the frequency of TSTAT.

Figure 9–3. Timer Period Register Diagram

15                                                                                                                                                                                                0

Timer Period

RW, +0

9.2.3 Timer Counter Register

The timer counter register (Figure 9–4) increments whenever enabled to count.
Upon reaching the value in the timer period register, it resets to 0 on the next

CPU clock. each cycle of the timer input clock.

Figure 9–4. Timer Counter Register Diagram

15                                                                                                                                                                                                0

Timer Counter

RW, +0
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9.3 Resetting the Timer and Enabling Counting: GO and HLD

Table 9–3 shows how the GO and HLD- enable basic features of timer operation.

Table 9–3. Timer GO and HLD Field Operation

Operation GO HLD Description

Holding the timer 0 0 Counting is disabled.

Restarting the timer after
hold

0 1 Timer proceeds from state before hold. The timer counter
is NOT reset.

Reserved 1 0 undefined

Starting the timer 1 1 Timer counter resets to 0 and starts counting whenever
enabled. Once set, GO self-clears.

9.3.1 Initializing the Timer

Configuring a timer requires three basic steps:

1) If the timer is not currently held, place the timer in hold. Note that after
device reset, the timer is already in the hold state.

2) Write the desired value to the timer period register.

3) Start the timer by setting the GO and HLD bits of the timer control register
to 1 and simultaneously writing the desired values to the timer control
register.
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9.4 Timer Counting

The timer counter runs at the CPU clock rate. However, counting is enabled
by on the low-to-high transition from one CPU clock to the next of one of the
timer count enable source. This transition is detected by the edge detect circuit
shown in Figure 9–1. Each time an active transition is detected a one CPU
clock wide clock enable pulse is generated. To the user, this makes the counter
appear as if it were getting clocked by the count enable source. Thus, this

count enable source is referred to as the clock source.

Upon reaching a value equal to the timer period register, the timer is reset to
zero. This resetting occurs on the next CPU clock after the timer counter and
the timer period match. Thus, the counter counts from zero to N. Consider the
case where the period is 2 and the CPU clock/4 was selected as the timer clock
source (CLKSRC = 1). Once started the timer would count, the following
sequence: 0, 0, 0, 0, 1, 1, 1, 1, 2, 0, 0, 0, 1, 1, 1, 1, 2, 0, 0, 0…. Note that
although the counter counts from 0 to 2, the period is 8 (= 2*4) CPU clock
cycles rather than 12 (= 3*4) CPU clock cycles. Thus, the countdown period

is TIMER PERIOD not TIMER PERIOD+1.
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9.5 Timer Clock Source Selection: CLKSRC

Low to high transitions of the timer input clock allow the timer counter to incre-
ment. Two sources are available to drive the timer input clock:

1) The input value on the TINP pin. This signal is synchronized to prevent any
metastability caused by asynchronous external inputs.

2) The CPU Clock/4.
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9.6 Timer Pulse Generation

The two basic pulse generation modes are pulse mode and clock mode, as
shown in Figure 9–5 and Figure 9–6, respectively. You can select the mode
with the C/P- bit of the timer global control register. Note that in pulse mode,
PWID in the timer control register can set the pulse width to either one or two
input clock periods. The purpose of this feature is to provide minimum pulse
widths in the case where TSTAT drives the TIM output. TSTAT drives this pin
when TIM is used as a timer pin (FUNC = 1) and the CPU clock/4 is the clock
source (CLKSRC = 0). Thus, the TIM pulse width is either 4 or 8 CPU clocks
wide. Table 9–4 details equations for various TSTAT timing parameters in

pulse and clock modes.

Figure 9–5. Timer Operation in Pulse Mode (CIP = 0)
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Figure 9–6. Timer Operation in Clock Mode (CIP = 1)
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Table 9–4. TSTAT Parameters in Pulse and Clock Modes

Mode Frequency Period Width High Width Low

Pulse
f (clock source) timer period register (PWID + 1) timer period register – (PWID + 1)

Pulse
timer period register f (clock source f (clock source) f (clock source)

Cl k
f (clock source) 2 * timer period register timer period register timer period register

Clock
2 * timer period register f (clock source f (clock source f (clock source
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9.7 Boundary Conditions in the Control Registers

Certain boundary conditions affect timer operation:

1) Zero timer period register and counter register. After device reset and
before the timer starts counting, TSTAT is held at 0. After the timer starts
running by setting GO = 1, when the period and counter registers are zero,
the operation of the timer depends on the C/P mode selected. In pulse
mode, the TSTAT = 1 regardless whether or not it is held. In clock mode,
when the timer is held (HLD = 0), TSTAT keeps it’s previous value and
when HLD = 1, TSTAT toggles with a frequency of (1/2 CPU clock frequency).

2) Counter overflow. When the counter register is set to a value greater than
the value of the period register, the counter reaches its maximum value
(FFFFFFFFh), rolls over to 0, and continues.

3) Writing to registers of an active timer. Writes from the peripheral bus over-
ride register updates to the counter register and new status updates to the
control register.

4) Small timer period values in pulse mode. Note that small periods in pulse
mode can cause TSTAT to remain high. This condition occurs when TIMER
PERIOD ≤ PWID + 1.
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9.8 Timer Interrupts

The TSTAT signal directly drives the CPU interrupt as well as a DMA synchro-
nization event. The frequency of the interrupt is the same as the frequency of

the TSTAT.

9.9 Emulation Operation

During debug using the emulator, the CPU may be halted on an execute packet
boundary for single stepping, benchmarking, profiling, or other debug uses.
During an emulation halt, the timer halts when the CPU clock/4 is selected as
the clock source (CLKSRC = 1). Here, the counter is only enabled to count dur-
ing those cycles when the CPU is not stalled due to the emulation halt. Thus,
counting will be re-enabled during single-step operation. If CLKSRC = 0, the

timer continues counting as programmed.

Timer Interrupts / Emulation Operation
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Interrupt Selector and External Interrupts

This chapter describes the interrupt selector and registers available for the
TMS320C62xx devices.
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10.1 Overview

The ‘C6x peripheral set produces 16 interrupt sources. The CPU however has
12 interrupts available for use. The interrupt selector allows you to choose and
prioritize which 12 of the 16 your system needs to use. The interrupt selector
also allows you to effectively change the polarity of external interrupt inputs.
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10.2 Available Interrupt Sources

Table 10–1 lists the available interrupts. Note that this table is similar to the
DMA synchronization events in the Chapter 4 DMA Controller except for two
differences. One difference is that the MCSP generates separate interrupts
and DMA synchronization events. The second difference is that DSPINT has
been moved to allow a 4-bit encoding.

Table 10–1. Available Interrupts

Interrupt
Selection Number

Interrupt
Acronym Interrupt Description

0000b DSPINT Host Port Host to DSP Interrupt

0001b TINT0 Timer 0 Interrupt

0010b TINT1 Timer 1 Interrupt

0011b SD_INT EMIF SDRAM Timer Interrupt

0100b EXT_INT4 External Interrupt Pin 4

0101b EXT_INT5 External Interrupt Pin 5

0110b EXT_INT6 External Interrupt Pin 6

0111b EXT_INT7 External Interrupt Pin 7

1000b DMA_INT0 DMA Channel 0 Interrupt

1001b DMA_INT1 DMA Channel 1 Interrupt

1010b DMA_INT2 DMA Channel 2 Interrupt

1011b DMA_INT3 DMA Channel 3 Interrupt

1100b XINT0 MCSP 0 Transmit Interrupt

1101b RINT0 MCSP 0 Receive Interrupt

1110b XINT1 MCSP 1 Transmit Interrupt

1111b RINT1 MCSP 1 Receive Interrupt

For more information on interrupts, including the interrupt vector table, see the
TMS320C62xx CPU and Instruction Set Reference Guide.
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10.3 External Interrupt Signal Timing

EXT_ and NMI are dedicated external interrupt sources. In addition, the FSR
and FSX can be programmed to directly drive the RINT and XINT signals. Be-
cause these signals are asynchronous, they are passed through two registers
before being sent to either the DMA or CPU. Figure 10–1 shows the timing of
external interrupt signals using INT4 as an example. This diagram is similar to
the one in the CPU Reference Guide. However, this diagram also shows the de-
lays for the external interrupt through the two synchronization flip-flops. Note,
that this delay is two CPU clock (CLKOUT1) cycles. However, if the INT4 input
transitions during the setup and hold time with respect to the CLKOUT1 rising
edge, this delay could be as long as 3 CLKOUT1 cycles. Once synchronized,
an additional 3 CLKOUT1 cycle delay occurs before the related interrupt flag
(IF4) is set.

The interrupt can only be scheduled to be taken one CLKOUT1 cycle later at
the earliest as indicated by the active internal interrupt acknowledge (IACK)
signal. The interrupt can be postponed or inhibited if not properly enabled as
described in other chapters of the CPU Reference Guide. In that case, IACK
will be also be postponed. Along with IACK, the CPU sets the INUM signal to
indicate which interrupt was taken. Externally, the IACK pin pulse is extended
to two CLKOUT2 cycles wide and synchronized to CLKOUT2. Also, the INUM
pin signal frames this external IACK with one CLKOUT2 cycle of setup and
hold, for a width of 4 CLKOUT2 cycles. Note that even though INUM and IACK
in the diagram are not valid on a CLKOUT2 rising edge, the internal circuitry
still catches the transition and produces the desired waveforms on the IACK
and INUM pins.
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Figure 10–1. Timing of External Interrupt Related Signals
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10.4 Interrupt Selector Registers

Table 10–2 shows the interrupt selector registers. The Interrupt Multiplexor
Registers determine the mapping between the interrupt sources in Table 10–1
and the CPU interrupts 4 through 15 (INT4-INT15). The External Interrupt
Polarity register sets the polarity of external interrupts.

Table 10–2. Interrupt Selector Registers

Hex Byte
Address Name Description Section

019C0000 Interrupt Multiplexer High Selects which interrupts drive CPU interrupts 10–15
(INT10–15)

10.4.2

019C0004 Interrupt Multiplexer Low Selects which interrupts drive CPU interrupts 4–9
(INT4–INT9)

10.4.2

019C0008 External Interrupt Polarity Sets the polarity of the external interrupts
(EXT_INT4–EXT_INT7)

10.4.1

10.4.1 External Interrupt Polarity Register

The external interrupt polarity register allows you to change the polarity of the
four external interrupts (EXT_INT4-EXT_INT7). Normally, a low-to-high transi-
tion on an interrupt source is recognized as an interrupt. By setting the related
XIP bit in this register to 1, you can invert the external interrupt source and effec-
tively have the CPU detect high-to-low transitions of the external interrupt. If the
related XIP is cleared to 0, then the non-inverted external interrupt is passed and
the CPU recognizes a low-to-high transition as signaling an interrupt.

Figure 10–2. External Interrupt Polarity Register
15                                                                                                                                            4 3 2 1 0

reserved XIP7 XIP6 XIP5 XIP4

R, +0 RW,
+0

RW,
+0

RW,
+0

RW,
+0

10.4.2 Interrupt Multiplexer Register

The INTSEL fields in the Interrupt Multiplexer Registers allow mapping the inter-
rupt sources in to particular interrupts. The INTSEL4-INTSEL15 correspond to
CPU interrupts INT4-INT15 as shown in Table 10–3. By setting the INTSEL
fields to the value of the desired interrupt selection number in Table 10–2, you
may map any interrupt source to any CPU interrupt. Table 10–3 also shows the
default mapping of interrupt sources to CPU interrupts.
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Figure 10–3. Interrupt Multiplexer Low Register Diagram

31           30 29                                  26 25 24                                  21 20 19                                  16

reserved INTSEL9 reserved INTSEL8 reserved INTSEL7

R, +0 RW, +1001 R, +0 RW, +1000 R, +0 RW, +0111

15           14 13                                  10 9 8                                      5 4 3                                      0

reserved INTSEL6 reserved INTSEL5 reserved INTSEL4

R, +0 RW, +0110 R, +0 RW, +0101 R, +0 RW, +0100

Figure 10–4. Interrupt Multiplexer High Register Diagram

31           30 29                                  26 25 24                                  21 20 19                                  16

reserved INTSEL15 reserved INTSEL14 reserved INTSEL13

R, +0 RW, +0010 R, +0 RW, +0001 R, +0 RW, +0000

15           14 13                                  10 9 8                                      5 4 3                                      0

reserved INTSEL12 reserved INTSEL11 reserved INTSEL10

R, +0 RW, +1011 R, +0 RW, +1010 R, +0 RW, +0011

Table 10–3. Default Interrupt Mapping

CPU 
Interrupt

Related
INTSEL field

INTSEL 
Reset Value

Interrupt
Acronym Interrupt Description

INT4 INTSEL4 0100 EXT_INT4 External Interrupt Pin 4

INT5 INTSEL5 0101 EXT_INT5 External Interrupt Pin 5

INT6 INTSEL6 0110 EXT_INT6 External Interrupt Pin 6

INT7 INTSEL7 0111 EXT_INT7 External Interrupt Pin 7

INT8 INTSEL8 1000 DMA_INT0 DMA Channel 0 Interrupt

INT9 INTSEL9 1001 DMA_INT1 DMA Channel 1 Interrupt

INT10 INTSEL10 0011 SD_INT EMIF SDRAM Timer Interrupt

INT11 INTSEL11 1010 DMA_INT2 DMA Channel 2 Interrupt

INT12 INTSEL12 1011 DMA_INT3 DMA Channel 3 Interrupt

INT13 INTSEL13 0000 DSPINT Host Port Host to DSP Interrupt

INT14 INTSEL14 0001 TINT0 Timer 0 Interrupt

INT15 INTSEL15 0010 TINT1 Timer 1 Interrupt
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10.5 Configuring the Interrupt Selector

The interrupt selector registers is meant to be configured once after reset during
initialization before enabling interrupts. Once the registers have been set, the
interrupt flag register should be cleared by the user after some delay to remove
any spurious transitions caused by the configuration. You may reconfigure the
interrupt selector during other times, but spurious interrupt conditions maybe
detected by the CPU on the interrupts affected by the modified fields.
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This chapter describes the PLL device clocking for the TMS320C62xx.
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11.1 Overview

An external oscillator drives the on-chip PLL (Phase-Locked Loop) circuit that
generates all internal and external clocks. The PLL multiplies the external oscil-
lator frequency by 4 and feeds the resulting clock to CLKOUT1 output pin. The
internal version of CLKOUT1 is used by the processor as an instruction cycle
clock. Most timing parameters of this device are defined relative to the CLKOUT1
clock and specifically to it’s rising edge. CLKOUT2 is another output clock derived
in EMIF from CLKOUT1 at half of its frequency. Two other clock signals are
derived from the PLL outputs – SSCLK and SDCLK (also in EMIF). They are used
to clock the external SBSRAM and SDRAM synchronous memories.

In addition x4 mode, the clock circuit can operate in multiply by 1 mode, where
the input clock frequency is the same as the CLKOUT1 output clock frequency.
The factors to consider in choosing the multiply factor include board level noise
and clock jitter. The x4 mode will minimize the board noise, while the x1 mode
will reduce the internal clock jitter. The clock mode is controlled by two
CLKMODE pins as shown in the following Figure.

The amount of time that the PLL needs to synchronize to the output frequency
depends on the CLKIN and CLKOUT1 frequencies and is typically in the range
of tens of microseconds. See the TMS320C6201 device data sheet table for
the exact time. The synchronization time affects the duration of the Reset sig-
nal in that the reset has to be asserted long enough for the PLL to synchronize
to the proper output frequency.

Three PLLFREQ pins identify the range of CLKOUT1 frequencies that the PLL
is expected to synchronize to. The PLL also requires 2 bypass capacitors
(between PLLV and PLLG), external low-pass filter components (R1, C1 ,C2) and
an EMI filter. The values for R1, C1, C2 and the filter depend on the CLKIN and
CLKOUT1 frequencies. Refer to the Data Sheet for PLL external component and
the EMI filter values.
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Figure 11–1.Clock PLL DIagram
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1 – MULT � 4 f(CLKOUT1) = f(CLKIN) � 4
1 – Reserved
0 – Reserved
0 – MULT � 1 f(CLKOUT1) = f(CLKIN)

� For CLKMODE  x4, values for C1, C2 and R2 depend on CLKIN and
CLKOUT frequencies.

� For CLKMODE  x1, the PLL is by-passed and all six external PLL components
can be removed. For this case, the PLLV terminal has to be connected to a
clean 2.5V supply and the PLLG and PLLF terminals should be tied together.

� Due to overlap of frequency ranges when choosing the PLLFREQ more
that one frequency range can contain the desired CLKOUT1 frequency.
Choose the lowest frequency range including the desired frequency. For ex-
ample, for CLKOUT1  =  133MHz, chose PLLFREQ value of 000b. For
CLKOUT1 = 166 or 200MHz choose PLLFREQ value of 010b. PLLFREQ
values other then 000b, 001b and 010b are reserved.
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Power-Down Logic

This chapter describes the power-down modes of the TMS320C62xx.
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12.1 Overview

Most of the operating power of CMOS logic is dissipated during circuit switching
from one logic state to another. By preventing some or all of chip’s logic from
switching, significant power savings can be realized without losing any data or
operational context. Power-down mode PD1 blocks the internal clock inputs at
the boundary of the CPU, preventing most of its logic from switching. PD1 effec-
tively shuts down the CPU. Additional power savings are accomplished in pow-
er-down mode PD2, where the entire on-chip clock structure (including multiple
buffers) is “halted” at the output of the PLL (see Figure 12–1 below). PD3 is like
PD2 but also disconnects the external clock source (CLKIN) from reaching the
PLL. Wake-up from PD3 takes longer then wake-up from PD2 because the PLL
needs to be re-locked, just as it does following power-up.

PD2 and PD3 halt the entire chip in both PLL clock modes - x1 and x4. Both
the PD2 and PD3 signals also assert the PD pin for external recognition of
these two power-down modes. In addition to power-down modes described in
this chapter, the IDLE instruction provides lower CPU power consumption by
executing multiple NOPs. The IDLE instruction terminates only upon servicing
an interrupt.In addition, the reset condition forces a complete pwer down.

Figure 12–1. Power-Down Mode Logic
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Figure 12–2. PRWD Field of the CSR Register

31                      16 15 14 13 12 11 10 9                       0

reserved
enabled

or non-enabled
interrupt wake 1

enabled
interrupt
wake 1

Pd3 Pd2 Pd1 CSR

PRWD field of CSR register

The power-down modes and their wake-up methods are programmed by setting
bits 10-15 in the of the Control Status Register (CSR PWRD field). PD2 and PD3
modes can only be aborted by device Reset, while PD1 mode can also be termi-
nated by an enabled interrupt, or any interrupt (enabled or not), as directed by bits
13 and 14 of the CSR (interrupts are edge driven). When writing to CSR, all bits
of the PWRD field should be set at the same time. Logic 0 should be used when
writing to reserved fields (bit 15 of CSR).

Table 12–1. Power-Down Mode and Wake-Up Selection

PRWD Power-down mode/Wake-up method

000000 no power-down

001001 Pd1 / wake by an enabled interrupt

010001 Pd1 / wake by an enabled or non-enabled interrupt

011010 Pd2

011100 Pd3

reserved
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12.2 Triggering, Wake-up, and Effects

Power-down mode PD1 takes effect 3-4 instructions after the instruction that
caused the power-down (by setting the idle bits in the CSR). See the instruction
flow below:

INSTR1 (MVC) power-down mode is set by this instruction
INSTR2 CPU notifies power-down logic to initiate power-down
INSTR3 power-down signal is sent to CPU and/or peripherals
INSTR4 CPU receives the internal power-down signal
INSTR5 CPU suspends execution before INSTR5 or INSTR6
INSTR6 CPU resumes execution with INSTR5 or INSTR6
INSTR7 normal program execution resumed here

The wake-up from Pd1 can be triggered by either an enabled interrupt, or any
interrupt (enabled or not). The first case is selected by writing a logic 1 to bit 13
of the Control Status Register (PWRD field), and the second case is selected by
writing a logic 1 into bit 14 of CSR. If PD1 mode is terminated by a non-enabled
interrupt, the program execution returns to the 4th or 5th instruction following the
one that caused the power-down (by setting the idle bits in the CSR). Wake-up
by an enabled interrupt executes the corresponding Interrupt Service Fetch Pack-
et first, prior to returning to the 4th or 5th instruction following the one that caused
the power-down (CSR register GIE bit and IER register NMIE bit must also be
set in order for the ISFP to execute), otherwise execution returns to the previous
point.
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Table 12–2. Characteristics of the Power-Down Modes

Power-down
Mode Trigger Action Wake-up Method Effect on Chip’s Operation

PD1 write logic 001001b
or 010001b to bits
15-10 of the CSR

internal interrupt,
external interrupt or
Reset

CPU halted (except for the interrupt logic)

PD2 write logic 011010b to
bits 15-10 of the CSR

Reset only Output clock from PLL is halted, stopping
the internal clock structure from switching
and resulting in the entire chip being
halted. Signal terminal PD_ is driven low.
All register and internal RAM contents are
preserved. All signal terminals behave the
same way as during Reset.

PD3 write logic 11100b to
bits 15-10 of the CSR

Reset only Input clock to the PLL is halted, shutting
down the PLL and stopping the internal
clock structure from switching and result-
ing in the entire chip being halted. Signal
terminal PD_ is driven low. All register and
internal RAM contents are preserved. All
signal terminals behave the same way as
during Reset. Following reset, the PLL
needs time to re-lock, just as it does
following power-up.
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Designing for JTAG Emulation

This chapter assists you in meeting the design requirements of the XDS510
emulator with respect to JTAG designs and discusses the XDS510 cable
(manufacturing part number 2617698-0001). This cable is identified by a label
on the cable pod marked JTAG 3/5V  and supports both standard 3-volt and

5-volt target system power inputs.

The term JTAG, as used in this book, refers to TI scan-based emulation, which
is based on the IEEE 1149.1 standard.
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13.1 Designing Your Target System’s Emulator Connector (14-Pin Header)

JTAG target devices support emulation through a dedicated emulation port.
This port is a superset of the IEEE 1149.1 standard and is accessed by the
emulator. To communicate with the emulator, your target system must have
a 14-pin header  (two rows of seven pins) with the connections that are shown

in Figure 13–1. Table 13–1 describes the emulation signals. 

Figure 13–1. 14-Pin Header Signals and Header Dimensions

TDO 7 8 GND

TMS 1 2 TRST

TDI 3 4 GND

TCK_RET 9 10 GND

TCK 11 12 GND

Header Dimensions:
Pin-to-pin spacing, 0.100 in. (X,Y)
Pin width, 0.025-in. square post
Pin length, 0.235-in. nominal

PD (VCC) 5 6 no pin (key)†

EMU0 13 14 EMU1

† While the corresponding female position on the cable connector is plugged to prevent improper
connection, the cable lead for pin 6 is present in the cable and is grounded, as shown in the sche-

matics and wiring diagrams in this document.

Table 13–1. 14-Pin Header Signal Descriptions

Signal Description Emulator †

State
Target †

State

TMS Test mode select O I

TDI Test data input O I

TDO Test data output I O

TCK Test clock. TCK is a 10.368-MHz clock
source from the emulation cable pod.   This
signal can be used to drive the system test
clock

O I

TRST‡ Test reset O I

EMU0 Emulation pin 0 I I/O

EMU1 Emulation pin 1 I I/O

PD(VCC) Presence detect. Indicates that the emula-
tion cable is connected and that the target is
powered up. PD should be tied to VCC in the
target system.

I O

TCK_RET Test clock return. Test clock input to the
emulator. May be a buffered or unbuffered
version of TCK.

I O

GND Ground

† I = input; O = output
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‡ Do not use pullup resistors on TRST: it has an internal pulldown device. In a low-noise
environment, TRST can be left floating. In a high-noise environment, an additional pulldown
resistor may be needed. (The size of this resistor should be based on electrical current

considerations.)
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Although you can use other headers, recommended parts include:

straight header, unshrouded DuPont Connector Systems
part numbers:  65610–114

 65611–114

 67996–114

 67997–114

13.2 Bus Protocol

The IEEE 1149.1 specification covers the requirements for the test access port
(TAP) bus slave devices and provides certain rules, summarized as follows:

� The TMS/TDI inputs are sampled on the rising edge of the TCK signal of
the device.

� The TDO output is clocked from the falling edge of the TCK signal of the
device.

When these devices are daisy-chained together, the TDO of one device has
approximately a half TCK cycle setup to the next device’s TDI signal. This type
of timing scheme minimizes race conditions that would occur if both TDO and
TDI were timed from the same TCK edge. The penalty for this timing scheme

is a reduced TCK frequency.

The IEEE 1149.1 specification does not provide rules for bus master (emula-
tor) devices. Instead, it states that it expects a bus master to provide bus slave
compatible timings. The XDS510 provides timings that meet the bus slave

rules.

13.3 IEEE 1149.1 Standard

For more information concerning the IEEE 1149.1 standard, contact IEEE
Customer Service:

Address: IEEE Customer Service
445 Hoes Lane, PO Box 1331
Piscataway, NJ  08855-1331

Phone: (800) 678–IEEE in the US and Canada
(908) 981–1393 outside the US and Canada

FAX: (908) 981–9667         Telex:       833233

Designing Your Target System’s Emulator Connector (14-Pin Header) / Bus Protocol / IEEE 1149.1 Standard
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13.4 JTAG Emulator Cable Pod Logic

Figure 13–2 shows a portion of the emulator cable pod. These are the func-
tional features of the pod:

� Signals TDO and TCK_RET can be parallel-terminated inside the pod if
required by the application. By default, these signals are not terminated.

� Signal TCK is driven with a 74LVT240 device. Because of the high-current
drive (32 mA IOL/IOH), this signal can be parallel-terminated. If TCK is tied
to TCK_RET, then you can use the parallel terminator in the pod.

� Signals TMS and TDI can be generated from the falling edge of TCK_RET,
according to the IEEE 1149.1 bus slave device timing rules.

� Signals TMS and TDI are series-terminated to reduce signal reflections.

� A 10.368-MHz test clock source is provided. You may also provide your
own test clock for greater flexibility.

Figure 13–2. JTAG Emulator Cable Pod Interface
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EMU1 (Pin 14)
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† The emulator pod uses TCK_RET as its clock source for internal synchronization. TCK is provided
as an optional target system test clock source.
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13.5 JTAG Emulator Cable Pod Signal Timing

Figure 13–3 shows the signal timings for the emulator cable pod. Table 13–2
defines the timing parameters. These timing parameters are calculated from
values specified in the standard data sheets for the emulator and cable pod
and are for reference only. Texas Instruments does not test or guarantee these

timings.

The emulator pod uses TCK_RET as its clock source for internal synchroni-
zation. TCK is provided as an optional target system test clock source.

Figure 13–3. JTAG Emulator Cable Pod Timings
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Table 13–2. Emulator Cable Pod Timing Parameters

No.  Reference   Description Min Max Units

1 tc(TCK) TCK_RET period 35 200 ns

2 tw(TCKH) TCK_RET high-pulse duration 15 ns

3 tw(TCKL) TCK_RET low-pulse duration 15 ns

4 td(TMS) Delay time, TMS/TDI valid from TCK_RET low 6 20 ns

5 tsu(TDO) TDO setup time to TCK_RET high 3 ns

6 th(TDO) TDO hold time from TCK_RET high 12 ns
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13.6 Emulation Timing Calculations

The following examples help you calculate emulation timings in your system.
For actual target timing parameters, see the appropriate device data sheets.

Assumptions:

tsu(TTMS) Target TMS/TDI setup to TCK high 10 ns

td(TTDO) Target TDO delay from TCK low 15 ns

td(bufmax) Target buffer delay, maximum 10 ns

td(bufmin) Target buffer delay, minimum 1 ns

t(bufskew) Target buffer skew between two devices
in the same package:
[td(bufmax) – td(bufmin)] × 0.15

1.35 ns

t(TCKfactor) Assume a 40/60 duty cycle clock 0.4  
(40%)

Given in Table 13–2 ( on page 13-6):

td(TMSmax) Emulator TMS/TDI delay from TCK_RET
low, maximum

20 ns

tsu(TDOmin) TDO setup time to emulator TCK_RET
high, minimum

3 ns

There are two key timing paths to consider in the emulation design:

� The TCK_RET-to-TMS/TDI path, called tpd(TCK_RET–TMS/TDI), and
� The TCK_RET-to-TDO path, called tpd(TCK_RET–TDO).

Of the following two cases, the worst-case path delay is calculated to deter-
mine the maximum system test clock frequency.
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Case 1:  Single processor, direct connection, TMS/TDI timed from TCK_RET low. 

t
pd �TCK_RET–TMS�TDI� �

�td �TMSmax� � tsu �TTMS��
t�TCKfactor�

�
[20ns � 10ns]

0.4
� 75ns (13.3 MHz)

tpd �TCK_RET–TDO� �
�td �TTDO� � tsu �TDOmin��

t�TCKfactor�

�
[15ns � 3ns]

0.4
� 45ns (22.2 MHz)

In this case, the TCK_RET-to-TMS/TDI path is the limiting factor.

Case 2: Single/multiprocessor, TMS/TDI/TCK buffered input, TDO buffered output,

TMS/TDI timed from TCK_RET low. 

tpd (TCK_RET–TMS�TDI) �
�td (TMSmax)

� tsu (TTMS)
� t (bufskew)

�
t�TCKfactor�

�
�20ns � 10ns � 1.35ns�

0.4

� 78.4ns (12.7 MHz)

tpd (TCK_RET–TDO) �
�td (TTDO)

� tsu (TDOmin) � td (bufmax)
�

t �TCKfactor�

� 70ns (14.3 MHz)

�
[15ns � 3ns � 10ns]

0.4

In this case, the TCK_RET-to-TMS/TDI path is the limiting factor.
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In a multiprocessor application, it is necessary to ensure that the EMU0–1 lines

can go from a logic low level to a logic high level in less than 10 µs. This can be

calculated as follows:

tr = 5(Rpullup × Ndevices × Cload_per_device)

= 5(4.7 k� ×16 × 15 pF)

= 5.64 µs
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13.7 Connections Between the Emulator and the Target System

It is extremely important to provide high-quality signals between the emulator
and the JTAG target system. Depending upon the situation, you must supply
the correct signal buffering, test clock inputs, and multiple processor intercon-

nections to ensure proper emulator and target system operation.

Signals applied to the EMU0 and EMU1 pins on the JTAG target device can
be either input or output (I/O).  In general, these two pins are used as both input
and output in multiprocessor systems to handle global run/stop operations.
EMU0 and EMU1 signals are applied only as inputs to the XDS510 emulator

header.

13.7.1 Buffering Signals

If the distance between the emulation header and the JTAG target device is
greater than six inches, the emulation signals must be buffered. If the distance
is less than six inches, no buffering is necessary. The following illustrations

depict these two situations.

� No signal buffering. In this situation, the distance between the header
and the JTAG target device should be no more than six inches.
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1
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JTAG Device

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

6 Inches or Less

The EMU0 and EMU1 signals must have pullup resistors connected to VCC to
provide a signal rise time of less than 10 µs. A 4.7-kΩ resistor is suggested for

most applications.
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� Buffered transmission signals. In this situation, the distance between
the emulation header and the processor is greater than six inches. Emula-
tion signals TMS, TDI, TDO, and TCK_RET are buffered through the same
package.

VCC

Emulator Header
VCC

GND

12
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8

6

4

5

GND

GND

GND

GND

GND

PD

TCK_RET

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

9

11

7

3

1

2

14

13

JTAG Device

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

Greater Than
6 Inches

� The EMU0 and EMU1 signals must have pullup resistors connected to
VCC to provide a signal rise time of less than 10 µs. A 4.7-kΩ resistor is

suggested for most applications.

� The input buffers for TMS and TDI should have pullup resistors con-
nected to VCC to hold these signals at a known value when the emula-
tor is not connected. A resistor value of 4.7 kΩ or greater is suggested.

� To have high-quality signals (especially the processor TCK and the
emulator TCK_RET signals), you may have to employ special care
when routing the PWB trace. You also may have to use termination
resistors to match the trace impedance. The emulator pod provides
optional internal parallel terminators on the TCK_RET and TDO. TMS

and TDI provide fixed series termination.

� Since TRST is an asynchronous signal, it should be buffered as
needed to insure sufficient current to all target devices.
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13.7.2 Using a Target-System Clock

Figure 13–4 shows an application with the system test clock generated in the
target system. In this application, the TCK signal is left unconnected.

Figure 13–4. Target-System-Generated Test Clock
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Note: When  the TMS/TDI lines are buffered,  pullup resistors should be used to hold the buffer
inputs at a known level when the emulator cable is not connected.

There are two benefits to having the target system generate the test clock:

� The emulator provides only a single 10.368-MHz test clock. If you allow
the target system to generate your test clock, you can set the frequency
to match your system requirements.

� In some cases, you may have other devices in your system that require
a test clock when the emulator is not connected. The system test clock
also serves this purpose.
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13.7.3 Configuring Multiple Processors

Figure 13–5 shows a typical daisy-chained multiprocessor configuration,
which meets the minimum requirements of the IEEE 1149.1 specification. The
emulation signals in this example are buffered to isolate the processors from
the emulator and provide adequate signal drive for the target system. One of
the benefits of this type of interface is that you can generally slow down the test
clock to eliminate timing problems. You should follow these guidelines for

multiprocessor support:

� The processor TMS, TDI, TDO, and TCK signals should be buffered
through the same physical package for better control of timing skew.

� The input buffers for TMS, TDI, and TCK should have pullup resistors con-
nected to VCC to hold these signals at a known value when the emulator
is not connected. A resistor value of 4.7 kΩ or greater is suggested.

� Buffering EMU0 and EMU1 is optional but highly recommended to provide
isolation. These are not critical signals and do not have to be buffered
through the same physical package as TMS, TCK, TDI, and TDO. Unbuf-
fered and buffered signals are shown in this section (page 13-10 and page
13-11).

Figure 13–5. Multiprocessor Connections
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13.8 Mechanical Dimensions for the 14-Pin Emulator Connector

The JTAG emulator target cable consists of a 3-foot section of jacketed cable,
an active cable pod, and a short section of jacketed cable that connects to the
target system. The overall cable length is approximately 3 feet 10 inches.
Figure 13–6 and Figure 13–7 (page 13-15) show the mechanical dimensions
for the target cable pod and short cable. Note that the pin-to-pin spacing on
the connector is 0.100 inches in both the X and Y planes. The cable pod box

is nonconductive plastic with four recessed metal screws.

Figure 13–6. Pod/Connector Dimensions
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Refer to Figure 13–7.

Emulator Cable Pod

Short, Jacketed Cable
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Note: All dimensions are in inches and are nominal dimensions, unless otherwise specified.
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Figure 13–7. 14-Pin Connector Dimensions
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13.9 Emulation Design Considerations

This section describes the use and application of the scan path linker (SPL),
which can simultaneously add all four secondary JTAG scan paths to the main
scan path. It also describes the use of the emulation pins and the configuration

of multiple processors.

13.9.1 Using Scan Path Linkers

You can use the TI ACT8997 scan path linker (SPL) to divide the JTAG
emulation scan path into smaller, logically connected groups of 4 to 16
devices.  As described in the Advanced Logic and Bus Interface Logic Data
Book (literature number SCYD001), the SPL is compatible with the JTAG
emulation scanning. The SPL is capable of adding any combination of its four

secondary scan paths into the main scan path.

A system of multiple, secondary JTAG scan paths has better fault tolerance
and isolation than a single scan path. Since an SPL has the capability of adding
all secondary scan paths to the main scan path simultaneously, it can support
global emulation operations, such as starting or stopping a selected group of

processors.

TI emulators do not support the nesting of SPLs (for example, an SPL
connected to the secondary scan path of another SPL).  However, you can

have multiple SPLs on the main scan path.

Although the ACT8999 scan path selector is similar to the SPL, it can add only
one of its secondary scan paths at a time to the main JTAG scan path. Thus,
global emulation operations are not assured with the scan path selector.  For

this reason, scan path selectors are not supported.

You can insert an SPL on a backplane so that you can add up to four device
boards to the system without the jumper wiring required with nonbackplane
devices. You connect an SPL to the main JTAG scan path in the same way you
connect any other device. Figure 13–8 shows you how to connect a secondary

scan path to an SPL.



Mechanical Dimensions for the 14-Pin Emulator Connector

13-17Designing for JTAG Emulation

Figure 13–8. Connecting a Secondary JTAG Scan Path to an SPL
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The TRST signal from the main scan path drives all devices, even those on
the secondary scan paths of the SPL.  The TCK signal on each target device
on the secondary scan path of an SPL is driven by the SPL’s DTCK signal.  The
TMS signal on each device on the secondary scan path is driven by the respec-

tive DTMS signals on the SPL.

DTDO on the SPL is connected to the TDI signal of the first device on the sec-
ondary scan path.  DTDI on the SPL is connected to the TDO signal of the last
device in the secondary scan path.  Within each secondary scan path, the TDI
signal of a device is connected to the TDO signal of the device before it.   If the
SPL is on a backplane, its secondary JTAG scan paths are on add-on boards;
if signal degradation is a problem, you may need to buffer both the TRST and
DTCK signals. Although less likely, you may also need to buffer the DTMSn

signals for the same reasons.
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13.9.2 Emulation Timing Calculations for SPL 

The following examples help you to calculate the emulation timings in the SPL
secondary scan path of your system. For actual target timing parameters, see

the appropriate device data sheets.

Assumptions:

tsu(TTMS) Target TMS/TDI setup to TCK high 10 ns

td(TTDO) Target TDO delay from TCK low 15 ns

td(bufmax) Target buffer delay, maximum 10 ns

td(bufmin) Target buffer delay, minimum 1 ns

t(bufskew) Target buffer skew between two devices
in the same package:
[td(bufmax) – td(bufmin)] × 0.15

1.35 ns

t(TCKfactor) Assume a 40/60 duty cycle clock 0.4   
(40%)

Given in the SPL data sheet:

td(DTMSmax) SPL DTMS/DTDO delay from TCK
low, maximum

31 ns

tsu(DTDLmin) DTDI setup time to SPL TCK
high, minimum

7 ns

td(DTCKHmin) SPL DTCK delay from TCK
high, minimum

2 ns

td(DTCKLmax) SPL DTCK delay from TCK
low, maximum

16 ns

There are two key timing paths to consider in the emulation design:

� The TCK-to-DTMS/DTDO path, called tpd(TCK–DTMS), and
� The TCK-to-DTDI path, called tpd(TCK–DTDI).
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Of the following two cases, the worst-case path delay is calculated to deter-
mine the maximum system test clock frequency.

Case 1:  Single processor, direct connection, DTMS/DTDO timed from TCK low. 

tpd �TCK–DTMS� �

�td �DTMSmax� � td �DTCKHmin� � tsu �TTMS�
�

t�TCKfactor�

�
[31ns � 2ns � 10ns]

0.4

� 107.5ns (9.3 MHz)

t
pd �TCK–DTDI�

�
�t

d �TTDO�� t
d �DTCKLmax�

� t
su �DTDLmin�

�
t�TCKfactor�

�
[15ns � 16ns � 7ns]

0.4

� 9.5ns (10.5 MHz)

In this case, the TCK-to-DTMS/DTDL path is the limiting factor.

Case 2: Single/multiprocessor, DTMS/DTDO/TCK buffered input, DTDI buffered out-

put, DTMS/DTDO timed from TCK low. 

tpd (TCK–TDMS) �

�td (DTMSmax) � t�DTCKHmin� � tsu (TTMS) � t(bufskew)�
t�TCKfactor�

�
[31ns � 2ns � 10ns � 1.35ns]

0.4

� 110.9ns (9.0 MHz)

tpd (TCK–DTDI) �

�td (TTDO) � td �DTCKLmax� � tsu (DTDLmin)
� td (bufskew)�

t�TCKfactor�

� 120ns (8.3 MHz)

�
[15ns � 15ns � 7ns � 10ns]

0.4

In this case, the TCK-to-DTDI path is the limiting factor.
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13.9.3 Using Emulation Pins 

The EMU0/1 pins of TI devices are bidirectional, three-state output pins.  When
in an inactive state, these pins are at high impedance. When the pins are

active, they function in one of the two following output modes:

� Signal Event
The EMU0/1 pins can be configured via software to signal internal events.
In this mode, driving one of these pins low can cause devices to signal
such events. To enable this operation, the EMU0/1 pins function as open-
collector sources. External devices such as logic analyzers can also be
connected to the EMU0/1 signals in this manner. If such an external
source is used, it must also be connected via an open-collector source.

� External Count
The EMU0/1 pins can be configured via software as totem-pole outputs
for driving an external counter. If the output of more than one device is
configured for totem-pole operation, then these devices can be damaged.
The emulation software detects and prevents this condition. However, the
emulation software has no control over external sources on the EMU0/1
signal. Therefore, all external sources must be inactive when any device
is in the external count mode.

TI devices can be configured by software to halt processing if their EMU0/1
pins are driven low. This feature, in combination with the use of the signal event
output mode, allows one TI device to halt all other TI devices on a given event

for system-level debugging.

If you route the EMU0/1 signals between boards, they require special handling
because these signals are more complex than normal emulation signals.
Figure 13–9 shows an example configuration that allows any processor in the
system to stop any other processor in the system.  Do not tie the EMU0/1 pins
of more than 16 processors together in a single group without using buffers.
Buffers provide the crisp signals that are required during a RUNB (run bench-
mark) debugger command or when the external analysis counter feature is

used.
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Figure 13–9. EMU0/1 Configuration
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Notes: 1) The low time on EMUx-IN should be at least one TCK cycle and less than 10 �s. Software will set the EMUx-OUT
pin to a high state.

2) To enable the open-collector driver and pullup resistor on EMU1 to provide rising/falling edges of less than  25 ns,
the modification shown in this figure is suggested.   Rising edges slower than 25 ns can cause the emulator to detect
false edges during the RUNB command or when the external counter selected from the debugger analysis menu

is used.

These seven important points apply to the circuitry shown in Figure 13–9 and
the timing shown in Figure 13–10:

� Open-collector drivers isolate each board. The EMU0/1 pins are tied to-
gether on each board.

� At the board edge, the EMU0/1 signals are split to provide IN/OUT. This
is required to prevent the open-collector drivers from acting as a latch that
can be set only once.

� The EMU0/1 signals are bused down the backplane. Pullup resistors are
installed as required.

� The bused EMU0/1 signals go into a PAL� device (see Appendix A),
whose function is to generate a low pulse on the EMU0/1-IN signal when
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a low level is detected on the EMU0/1-OUT signal.  This pulse must be
longer than one TCK period to affect the devices, but less than 10 µs to
avoid possible conflicts or retriggering, once the emulation software clears
the device’s pins.

� During a RUNB debugger command or other external analysis count, the
EMU0/1 pins on the target device become totem-pole outputs. The EMU1
pin is a ripple carry-out of the internal counter. EMU0 becomes a
processor-halted signal.  During a  RUNB or other external analysis count,
the EMU0/1-IN signal to all boards must remain in the high (disabled)
state. You must provide some type of external input (XCNT_ENABLE) to
the PAL to disable the PAL from driving EMU0/1-IN to a low state. 

� If sources other than TI processors (such as logic analyzers) are used to
drive EMU0/1, their signal lines must be isolated by open-collector drivers
and be inactive during RUNB and other external analysis counts.

� You must connect the EMU0/1-OUT signals to the emulation header or di-
rectly to a test bus controller.
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Figure 13–10. Suggested Timings for the EMU0 and EMU1 Signals
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Figure 13–11. EMU0/1 Configuration With Additional AND Gate to Meet Timing 
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Notes: 1) The low time on EMUx–IN should be at least one TCK cycle and less than 10 �s. Software will set the EMUx–OUT
pin to a high state.

2) To enable the open-collector driver and pullup resistor on EMU1 to provide rising/falling edges of less than  25 ns,
the modification shown in this figure is suggested.   Rising edges slower than 25 ns can cause the emulator to detect
false edges during the RUNB command or when the external counter selected from the debugger analysis menu

is used.
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If having devices on one target board stopped by devices on another target
board via the EMU0/1 signals is not important, then the circuit in Figure 13–12
can be used.  In this configuration, the global-stop capability is lost. It is impor-

tant not to overload EMU0/1 with more than 16 devices.

Figure 13–12. EMU0/1 Configuration Without Global Stop
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Note: The open-collector driver and pullup resistor on EMU1 must be able to provide rising/falling edges of less than  25 ns.
Rising edges slower than 25 ns can cause the emulator to detect false edges during the RUNB command or when the
external counter selected from the debugger analysis menu is used.  If this condition cannot be met, then the EMU0/1
signals from the individual boards should be ANDed together (as shown in Figure 1-11 ) to produce an EMU0/1 signal for

the emulator.
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13.9.4 Performing Diagnostic Applications

For systems that require built-in diagnostics, it is possible to connect the
emulation scan path directly to a TI ACT8990 test bus controller (TBC) instead
of the emulation header.  The TBC is described in the Texas Instruments Ad-
vanced Logic and Bus Interface Logic Data Book (literature number
SCYD001). Figure 13–13 shows the scan path connections of n devices to the

TBC.

Figure 13–13. TBC Emulation Connections for n JTAG Scan Paths
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In the system design shown in Figure 1–13, the TBC emulation signals TCKI,
TDO, TMS0, TMS2/EVNT0, TMS3/EVNT1, TMS5/EVNT3, TCKO, and TDI0
are used, and TMS1, TMS4/EVNT2, and TDI1 are not connected.  The target
devices’ EMU0 and EMU1 signals are connected to VCC through pullup resis-
tors and tied to the TBC’s TMS2/EVNT0 and TMS3/EVNT1 pins, respectively.
The TBC’s TCKI pin is connected to a clock generator. The TCK signal for the

main JTAG scan path is driven by the TBC’s TCKO pin.
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On the TBC, the TMS0 pin drives the TMS pins on each device on the main
JTAG scan path.  TDO on the TBC connects to TDI on the first device on the
main JTAG scan path.  TDI0 on the TBC is connected to the TDO signal of the
last device on the main JTAG scan path.  Within the main JTAG scan path, the
TDI signal of a device is connected to the TDO signal of the device before it.
TRST for the devices can be generated either by inverting the TBC’s

TMS5/EVNT3 signal for software control or by logic on the board itself. 
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External Signal Description

This chapter describes external signals used by the CPU to communicate with
memory, peripherals, and external devices.

Chapter 14
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Table 14–1. External Signal Description 

(a) Clock / PLL

 Name Type Description

CLKIN I Clock Input

CLKOUT1 O Clock output at full device speed

CLKOUT2 O Clock output at half of device speed

CLKMODE(1:0) I Clock mode select 
Selects whether the output clock frequency = input clock frequency x4 or x1

PLLFREQ(3:1) I PLL Frequency Range 
Selects one of 5 frequency ranges bounding the CLKOUT1 signal
CLKOUT1 frequency determines the 3-bit value for the PLLFREQ pins.

PLLV  A† PLL analog VCC connection for the low-pass filter

PLLG A† PLL analog GND connection for the low-pass filter

PLLF A† PLL low-pass filter connection to external components and a bypass capacitor

†  A = Analog Signal (PLL Filter)

(b) JTAG Emulation

 Name Type Description

TMS I JTAG test port mode select (features an internal pull-up)

TDO O/Z JTAG test port data out

TDI I JTAG test port data in (features an internal pull-up)

TCK I JTAG test port clock

TRST I JTAG test port reset (features an internal pull-down)

EMU1 I/O/Z Emulation pin 1, pull-up with a dedicated 20KΩ resistor

EMU0 I/O/Z Emulation pin 0, pull-up with a dedicated 20KΩ resistor
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Table 14–1. External Signal Description (Continued)

(c) Control

Name Type Description

RESET I Device Reset

NMI I Non-maskable interrupt

EXT_INT(7:4) I External interrupts

IACK O Interrupt acknowledge for all active interrupts serviced by the CPU

INUM(3:0) O Active interrupt identification number 
Valid during IACK for all active interrupts (not just external)
Encoding order follows the Interrupt Service Fetch Packet ordering

LENDIAN I If high, selects Little Endian byte/half-word addressing order within a word
If low, selects Big Endian addressing

PD O Power-down mode2 or 3 active if low

BOOTMODE(4:0) I Boot Mode

(d) Host Port Interface (HPI)

Name Type Description

HINT O/Z Host Interrupt (from DSP to Host)

HCNTRL(1:0 ) I Host control – selects between Control, Address or Data registers

HHWIL I Host halfword select – first or second halfword (not necessarily high or low order)

HBE1 I Host byte select within word or half-word

HBE0 I Host byte select within word or half-word

HR/W I Host read or write select

HD(15:0) I/O/Z Host Port Data (used for transfer of data, address and control)

HAS I Host address strobe

HCS I Host chip select

HDS1 I Host data strobe 1

HDS2 I Host data strobe 2

HRDY O Host ready (from DSP to Host)
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Table 14–1. External Signal Description (Continued)

(e) External Memory Interface (EMIF)
EMIF – Control Signals Common to All Types of Memory

Name Type Description

CE(3:0) O/Z Memory space enables
Enabled by bits 24 and 25 of the word address
Only one asserted during any external data access

BE(3:0) O/Z Byte enable control (decoded from the 2 lowest bits of the internal address).
Byte write enables for most types of memory. Can be directly connected to
SDRAM read and write mask signal (SDQM)

EA(21:2) O/Z External Address (word address)

ED(31:0) I/O/Z External Data

(f) EMIF – Asynchronous Memory Control

Name Type Description

ARE O/Z Asynchronous Memory read strobe

AOE O/Z Asynchronous Memory output enable

AWE O/Z Asynchronous Memory write enable

ARDY I Asynchronous Memory ready signal

(g) EMIF – Synchronous Burst SRAM Control

Name Type Description

SSADS O/Z SBSRAM address strobe

SSOE O/Z SBSRAM output enable

SSWE O/Z SBSRAM write enable

SSCLK O/Z SBSRAM clock
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Table 14–1. External Signal Description (Continued)

(h) EMIF – Synchronous DRAM Control

Name Type Description

SDA10 O/Z SDRAM address 10 (separate for refresh)

SDRAS O/Z SDRAM row address strobe

SDCAS O/Z SDRAM column address strobe

SDWE O/Z SDRAM write enable

SDCLK O/Z SDRAM clock

(i) EMIF – Bus Arbitration

Name Type Description

HOLD I Hold request from the host

HOLDA O Hold request acknowledge to the host

(j) Timers

Name Type Description

TOUT1 O/Z Timer 1 or general purpose output

TOUT0 O/Z Timer 0 or general purpose output

TINP1 I Timer 1 or general purpose input

TINP0 I Timer 0 or general purpose input

(k) DMA

Name Type Description

DMAC(3:0) O DMA Action Complete
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Table 14–1. External Signal Description (Continued)

(l) Multi Channel Serial Port 1 (MCSP1)

Name Type Description

CLKS1 I External clock source

CLKR1 I/O/Z Receive clock

CLKX1 I/O/Z Transmit clock

DR1 I Receive data

DX1 O/Z Transmit data

FSR1 I/O/Z Receive frame sync

FSX1 I/O/Z Transmit frame sync

(m) Multi Channel Serial Port 0 (MCSP0)

Name Type Description

CLKS0 I External clock source

CLKR0 I/O/Z Receive clock

CLKX0 I/O/Z Transmit clock

DR0 I Receive data

DX0 O/Z Transmit data

FSR0 I/O/Z Receive frame sync

FSX0 I/O/Z Transmit frame sync
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Appendix A

Glossary

A
access: Generic term which includes memory load, and/or memory store.

address:  The location of program code or data stored; an individually
accessible memory location.

ALU: See arithmetic logic unit.

application-specific integrated circuit: A custom chip designed for a specific
application. It is designed by integrating standard cells from a library.

arithmetic logic unit (ALU):  The hardware of the CPU that performs arith-
metic and logic function.

B
block: The three least significant bits of the program address. These corre-

spond to the address within a fetch packet of the first instruction being
addressed.

boot: The process of loading a program into memory.

boot configuration: A set of parameters defining how a device is booted.

boot loader: A built-in segment of code that transfers code from an external
source to program memory at power up.

Appendix A
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C
cache: A fast storage buffer in the central processing unit of a computer.

cache controller: Coordinates program accesses between CPU program
fetch mechanism and the cache as well as external memory.

central processing unit (CPU): The unit that coordinates the functions of
a processor.

circular addressing: An address mode in which a finite set of addresses is
reused by linking the largest address back to the smallest address.

clock cycles: A periodic or sequence of events based on the input from the
external clock.

code: A set of instructions written to perform a task; a computer program or
part of a program.

compiler: A computer program that translates programs in a high-level lan-
guage into their assembly-language equivalents.

control register: A register that contains bit fields which define the way a
device operates.

control register file: A set of control registers.

CPU: See central processing unit.

crosspath: A link between register files to provide communication between
the CPU units.
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D
data memory: Memory accessed through the ‘C62xx’s RAM interface.

data memory controller: Coordinates RDY-stalls and memory requests
between the ’C6xx load/store units, and internal/external memory.

DMA: Direct Memory Access.

DMA destination: The module where the DMA data ends up. DMA data is
written to the DMA destination.

DMS I/F: One of 5 possible sources/destinations (H/W which interfaces the
DMA controller to the proper memory, based on memory address).

DMA operation: Generic term referring to a series of DMA data transfers.

DMA source: The module where the DMA data originates. DMA data is read
from the DMA source.

DMA transfer: Generic term referring to data transferred from one part of
memory to another. Each DMA transfer consists of a read bus cycle
(source –> DMA holding register), and a write bus cycle (DMA holding
register –> destination).

DMS: Data Memory System

dynamic random access memory (DRAM): Memory that can be read and
written by the microprocessor and whose storage locations can be
accessed in any order but must be refreshed (recharged) periodically to
retain data or program code.
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E
E1: A European high-speed network communication service that operates at

2.048M bits per second and uses A-law companding.

erasable programmable read-only memory (EPROM): A memory device
whose contents are erasable (usually via UV light), and programmable.

external memory interface (EMIF): Microprocessor hardware which is
used to read to and write from off-chip memory.

F
fetch packet: A contiguous eight word series of instructions fetched by the

CPU. Aligned on an eight word boundary.

first-in, first-out: A method for managing a set of items to which additions
and deletions are made; items are added to one end of the list and re-
moved from the other.

fixed-point processor: A processor which does arithmetic operations us-
ing integer arithmetic with no exponents.

Flash memory: Electronically erasable, programmable nonvolatile (read-
only) memory.

floating-point processor: A processor capable of handling floating-point
arithmetic where real operands are represented using exponents.

frame: An eight word space in the cache RAMs. Each fetch packet in the
cache resides in only one frame. A cache update will load a frame with
the requested fetch packet. The cache contains 512 frames.

G
global interrupt enable bit (GIE): A bit in the control status register (CSR)

that is used to enable or disable maskable interrupts.

H
half-word: For this device, a half-word is taken as a 16-bit data item taken

as a unit.

hardware interrupt: An interrupt triggered through physical connections
with on-chip peripherals or external devices.

host port interface (HPI): A parallel interface that the CPU uses to communi-
cate with a host processor.
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I
index: A nine-bit field in the program address which specifies which of the

512 frames in the cache the current access is mapped into.

indirect addressing:  Indirect addressing: An addressing mode in which an
address points to another pointer rather than to the actual data; this
mode is prohibited in RISC architecture.

instruction fetch packet: A group of up to eight instructions held in memory
for execution by the CPU.

interrupt: A signal sent by hardware or software to a processor requesting
attention. An interrupt tells the processor to suspend its current opera-
tion, save the current task status, and perform a particular set of instruc-
tions. Interrupts communicate with the operating system and prioritize
tasks to be performed.

interrupt service fetch packet (ISFP): A fetch packet used to service inter-
rupts. If eight instructions are insufficient, the user must branch out of this
block for additional interrupt service. If the delay slots of the branch do
not reside within the ISFP, execution continues from execute packets in
the next fetch packet (the next ISFP).

L
latency: The delay between the occurrence of a condition and the reaction of

the device. Also, in a pipeline, the necessary delay between the execution
of two instructions to ensure that the values used by the second instruction
are correct.

least significant bit (LSB): The lowest order bit in a word.
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M
maskable interrupt : A hardware interrupt that can be enabled or disabled

through software.

million instructions per second (MIPS): A measure of the execution
speed of a computer.

most significant bit (MSB): The highest order bit in a word.

multichannel buffered serial port (McBSP): An on-chip full-duplex circuit
that provides direct serial communication through several channels to
external serial devices.

multiplexer: A device for selecting one of several available signals.

multiplier: A CPU component that multiplies the contents of two registers.

multivendor internet protocol: A standard network protocol supported by
several major network communication vendors.

N
nonmaskable interrupt (NMI): An interrupt that can be neither masked nor

disabled.

normalization: The reduction of a complex data structure to its simplest
form or of a circuit to its lowest number of gates.

O
overflow: A condition in which the result of an arithmetic operation exceeds

the capacity of the register used to hold that result.
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P
packing: Minimizing the space occupied by data or memory through the

elimination of discontinuous spaces between segments.

parallelism: Sequencing events to occur simultaneously. Parallelism is
achieved in a CPU by using instruction pipelining.

peripheral: A device connected to and usually controlled by a host device.

pipeline: A method of executing instructions in which the output of one pro-
cess serves as the input to another, much like an assembly line. These
processes become the stages or phases of the pipeline.

pipeline processing: A technique that provides simultaneous, or parallel,
processing within the computer. It refers to overlapping operations by
moving data or instructions into a conceptual pipe with all stages of the
pipe processing simultaneously.

phase-locked loop: A circuit for synchronizing a variable oscillator with the
phase of the transmitted signal.

program cache: A fast memory cache for storing program instructions al-
lowing for quick execution.

program address: A 30-bit value placed on the PADDR lines of the CPU
boundary which specifies the address of the current requested program
data packet.

program memory: Memory accessed through the ‘C62xx’s program fetch
interface.
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R
random-access memory (RAM): A type of memory device in which the

individual locations can be accessed in any order.

register: A small area of high speed memory, located within a processor or
electronic device, that is used for temporarily storing data or instructions.
Each register is given a name, contains a few bytes of information, and
is referenced by programs.

reduced-instruction set computer (RISC): A computer whose instruction
set and related decode mechanism are much simpler than those of micro-
programmed complex instruction set computers. The result is a higher
instruction throughput and a faster real-time interrupt service response
from a smaller, cost-effective chip.

reset: A means of bringing the CPU to a known state by setting the registers
and control bits to predetermined values and signaling execution to start
at a specified address.

S
saturation: A state where any further input no longer results in the expected

output.

synchronous burst static random-access memory  (SBSRAM): RAM
whose contents does not have to be refreshed periodically. Transfer of
data is at a fixed rate relative to the clock speed of the device, but the
speed is increased.

synchronous dynamic random-access memory  (SDRAM): RAM whose
contents is refreshed periodically, or the data is lost. Transfer of data is
at a fixed rate relative to the clock speed of the device.

shifter: A hardware unit that shifts bits in a word to the left or to the right.

SBSRAM: synchronous burst SRAM

T
tag: The eighteen most significant bits of the program address. This value

corresponds to the physical address of the fetch packet that is in that
frame.

W
word: A 32-bit value.
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host-port interface 1-9
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scan path linkers
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13-23
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13-10, 13-11, 13-16, 13-17
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TDO signal 13-3, 13-4, 13-6, 13-7, 13-17, 13-23
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XDS510 emulator, JTAG cable. See emulation
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